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for classification of the inspected image. Each such word is represented using 6 images containing it, with

the visual word itself in a red rectangle. The analyzed image is presented above each visual word, with

red dots showing where this visual word is found. As seen in the graph, the image is classified based on 3

“swing”-related visual words describing “rope”, “sand” and “grass”. The full inference graph is seen in

Fig. 2.9 Section 2.4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Illustration of SIGN framework flow. (A) Modeling neural network layers as arising from a probabilistic

generative model, and forming a visual word dictionary to each modeled layer. Training the generative

model can be simultaneously with the network or post-hoc. (B) Forward pass through the modeled

network on a subset inputted test images. Calculate the co-occurrence matrix statistics for all visual words
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abnormal appearance of the example misled the network to consider the car as a truck. Bottom: The path

of a misclassified MNist ”9” digit example is shown. The input image traversing main decision clusters
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each visual word was added by the authors for convenience. The figure is best inspected by zooming in

on clusters of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 An image inference graph of an erroneous image. An image inference graph for a pineapple image

wrongly classified to the class "swing”. The model is trained using "pineapple" and its neighboring classes

(same as in Fig. 2.8), where the neighbor class "swing” is included. The graph is generated by applying

the node selection algorithm (Section 2.3.3) to a set Ω containing this single erroneous image. The

analyzed image is shown on the top of each cluster node, with red dots marking spatial locations assigned

to the cluster. In the top node, the pineapple object is marked in red circle for clarification. . . . . . . 40
2.10 Partial image inference graph of a correctly classified zebra image. The figure presents only the main

contributing visual words from the three bottom modelled layers. . . . . . . . . . . . . . . . . . 42

8



2.11 Sub-graph inference for ResNet50. Left: The pineapple image wrongly classified to class "swing"

in VGG-16, presented in Fig. 2.9, is correctly classified to "pineapple" class in ResNet50 (the pineapple

object is marked in green circle). The sub-graph presents the visual word from the top layer (add_16)

connected to a visual word from the lower layer (add_13). Right: The zebra image from Fig. 2.10,

correctly classified in VGG-16, is correctly classified in ResNet50 as well. The sub-graph includes a visual

word from the top layer (add_16) aggregated from two visual words from the lower layer (add_13). . 43
2.12 Biased data experiment results. Users were asked to determine whether inference graphs shown to

them contain corrupted data. The graphs shown were produced using ResNet20 trained either with clean

data (blue), or with opaque/transparent watermarks induced in 2 classes of CIFAR10. For the datasets

with watermarks, users were shown inference graphs of corrupted classes (green) and non-corrupted

classes (orange). Users easily detected corruptions in class inference graph of classes stained with

watermarks. When shown inference graphs of non-corrupted classes from the same corrupted dataset,

the user accuracy is lower, especially with transparent watermarks. . . . . . . . . . . . . . . . . . 44
2.13 Corrupted data debugging with SIGN. Class inference graph of "truck" class from ResNet20, trained on

biased CIFAR10. The data was corrupted by inducing 2 classes with transparent watermarks (α = 0.5) at

random places. The above graph shows the "truck" class inference graph in an experiment where classes

"truck" and "cat" were corrupted with purple letters "T" and "A" respectively. It is recommended to zoom

in for better inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.14 Attention maps demonstration on biased data. (a) Examples of CIFAR10 images corrupted with

transparent watermarks along with their (b) corresponding Grad-CAM [9] heatmaps. . . . . . . . . 46

3.1 Illustrations of ultrasonic overlapping echoes (top) along with their envelopes and TOFs (bottom). (a)

Minor overlap, (b) major overlap, (c) succesive overlaps, and (d) overlap with a low-amplitude echo. . 49
3.2 Simulated data illustration. Examples of Simulated signals (top) used for network training and testing,

along with their envelopes and TOFs (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Schematic overview of the suggested US-CNN architucture. . . . . . . . . . . . . . . . . . . . 55
3.4 Representative filters learned by the first layer of the network. Left: Filter of a network trained with

one filter in the first layer. Right: 3 Representative filters of a network trained with 30 filters in the first

layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Simulation results. Comparison of detection accuracy as measured by AUC (top) and F1 (bottom)

among the four methods tested. Detection accuracy is plotted as a function of echo overlap parameter λ

(right), required accuracy threshold ϵ (middle) and SNR (left). . . . . . . . . . . . . . . . . . . . 58
3.6 Demonstration of real phantoms used for thickness estimation experimentation. Top: Side view

illustrations of the phantoms: (a) Round Ultem phantom, and (b) Aluminum phantom. Bottom: Time-

domain signals from different layers of the (a) Ultem and (b) Aluminum phantoms. . . . . . . . . . 59
3.7 Thickness estimation results. Mean Absolute Error (MAE, in mm) of the tested methods on the (a)

Ultem and (b) Aluminum phantoms. In each figure, the left histogram shows average error on the thinnest

layer, the right histogram shows the average error of the remaining layers. . . . . . . . . . . . . . 60
3.8 Thickness estimation visualization for layer physical phantoms. Each pixel within the Time-of-Flight-

Difference (TOFD) predictions (Gray scale images) indicates the estimated thickness for the spatial

location. The color images are the corresponding TOFD error between the prediction and the ground

truth. Top: Ultem phantom. Bottom: Aluminum phantom. . . . . . . . . . . . . . . . . . . . . 61

9



3.9 A-scan prediction visualization. Left: A-scan with US-CNN echo detection from the 0.5mm ring of the

round Ultem phantom. Right: A-scan from the 0.1mm ring of the round Ultem along with detections of

US-CNN, SMP and ISTA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.10 Error as a function of training distribution width. Mean absolute errors of the four tested methods

as a function of training distribution width. (a)-(b) Round phantom. MAE of (a) thinnest layer and

(b) average of the rest of the layers. (c)-(d) Rectangular phantom. MAE of (c) thinnest layer and (d)

average of the rest of the layers. Very large errors (full height bars) are measured when a method fails to

find a second echo relevant for width estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Method: anomaly-based representations for cell profiling. (A) Top: Well-aggregated profiles. Left-to-

right: The CellProfiler software was used to extract single cell morphology features from Cell Painting

images, the single cell features were aggregated to a well-level profile. Bottom: Each plate (gray)

includes control (cyan) and treated (color) wells (cell icon). Half of the control wells were used to

train the in-distribution autoencoder (B) and the other wells were used for evaluation (C). (B) The

in-distribution autoencoder was trained to minimize the reconstruction error of control wells. (C)

The in-distribution autoencoder was used to reconstruct control and treated wells. The reconstruction

errors were calculated for each well. (D) The reconstruction error of a treated well was standardized

according to the reconstruction errors of the control wells that were not used for training. These

standardized reconstruction errors formed the “anomaly”-based representation. Treatments that lead to

high reconstruction errors (green), in respect to the controls’ reconstruction errors (blue), were defined

as “hits” (threshold in dashed red). (E) Anomaly-based representation can be used for a variety of

downstream applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Anomaly-based representations are more reproducible. (A) Cartoon depicting the reproducibility

determination. A treatment is defined as reproducible if the median pairwise correlation of its replicates

(Replicate Correlation) is higher than the 90th percentile of the pairwise correlation. (B) Cartoon depict-

ing the Percent Replicating score. The distribution of Replicate Correlations (green) versus the distribution

of Random Pairs Correlations (black). The dashed red vertical line defines the reproducibility threshold

of 90% of the random pairs distribution - a well to the right of this line (green cell icon) is defined as

reproducible, and the fraction of reproducible treatments determines the Percent Replicating score. (C)

Percent Replicating scores across datasets for the anomaly-based (left) and the CellProfiler representations

(right). Distribution of Replicate Correlations (green - anomaly-based, red - CellProfiler-based). Distribu-

tion of Random Pairs Correlations (gray), zero correlation (dashed gray vertical line), reproducibility

threshold (dashed red vertical line). (D) Venn diagram showing the number of reproducible treatments

exclusive to the anomaly-based (green) or CellProfiler-based (orange) representations, and common to

both representations (yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10



4.3 Anomaly-based representations improve MoA classification. (A) MoA classification workflow. Left-

to-right: inclusion of compounds that met our reproducibility criteria (for either the CellProfiler or the

Anomaly-based representations), followed by exclusion of MoAs with < 5 compounds attributed to them.

Training machine learning models using the anomaly-based versus the CellProfiler-based representations

with cross-validation. (B) MoA classification results for anomaly-based versus CellProfiler-based represen-

tations, using the reproducible inclusion criteria with (A ∪ C ∪ L) or without (C ∪ L) the anomaly-based

representations. (C) F1-scores of anomaly-based (green) versus the CellProfiler-based (orange) repre-

sentations trained on MLP and LR models for CDRP-bio (cpg0012-wawer-bioactivecompoundprofiling)

and LINCS (cpg0004-lincs) datasets. Each dot represents an experiment and bars indicate confidence

intervals. Red dashed line indicates the F1 random score. * - statistically significant (p-value < 0.05)

by Welsh t-test. P-values for CDRP-bio were 0.042 (LR) and 0.003 (MLP) and for LINCS 1.5e-10 (LR)

and 0.003 (MLP) (D) MoA-specific F1 scores using the (better performing) LR model. Bold indicates

MoAs that would not be included without reproducible compounds according to the anomaly-based

representations. F1-scores lower than the random score for both representations (1/19 MoAs in CDRP-bio,

and 9/55 MoAs in LINCS) were excluded from the figure to improve clarity. . . . . . . . . . . . . . 72
4.4 MoA interpretation. (A) Illustration of the explanation process of the anomalous features (orange on

the right). This anomaly is explained by the combined alteration of multiple input features (yellow on the

left). A group of well-level profiles of interest are passed through the network, and the features exhibiting

the highest reconstruction errors are identified. For each investigated feature (orange square in output),

the weights leading to its activation (green lines) are activated and the weights going from its CellProfiler

representation in the input are deactivated (red lines). The well-level profiles are reintroduced into the

network and the features that led to high reconstruction errors are found by using the autoencoder-

based anomaly SHAP. These explanations can be pooled according to a treatment or MoA to provide

the corresponding explanation. (B) Distributions of ATPase inhibitor top five features’ z-scores for the

CellProfiler (orange) and anomaly-based representations (green) ranked according to the CellProfiler

median z-scores (top) and by anomaly median z-scores (bottom) in the CDRP-bio dataset. Features in bold

are analyzed using the autoencoder-based anomaly SHAP in the following panels. (C-E) Explanations for

selected (see text for justification) altered features in the ATPase inhibitor MoA in the CDRP-bio dataset.

Each dot represents a replicate well, and the x-axis represents the SHAP values contributing to the errors.

Negative values indicate an inverse relationship between the inspected feature and the input feature

compared to the relationship in the control population. . . . . . . . . . . . . . . . . . . . . . . 74
4.1 Percent Replicating score as a function of the number of control wells used to train the in-distribution

autoencoder. Dashed orange line - the percent replicating score of the CellProfiler representations.

Green data points and shade show the percent replicating score mean and the standard deviation of the

anomaly-based representations over 10 independent experiments. . . . . . . . . . . . . . . . . . 80
4.2 Analysis of the complementary information shared between the anomaly-based, the CellProfiler, and

the gene expression representations (L1000). Top: Venn diagram showing the number of reproducible

treatments exclusive to the anomaly-based (green), CellProfiler-based (orange), and L1000-based (blue)

representations. Treatments found reproducible by multiple representations are shown by the intersection

of the different circles. Below: Percent Replicating scores for the L1000-based representations. Distribu-

tion of Replicate Correlations (blue), Random Pairs Correlations (gray), reproducibility threshold (dashed

red vertical line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11



4.3 Genetic expression representations (L1000) complement the CellProfiler (orange) and anomaly-based

(green) representations for MoA classification. Logistic Regression (LR) and Multi Layer Perceptron

(MLP) MoA classification F1 performance on CellProfiler versus anomaly-based representations without

(-L1000) or with (+L1000) the concatenation of the L1000 representation. Each dot represents a unique

experiment and bars indicate 95% confidence intervals. Red dashed line indicates the F1 random score. 81
4.4 Granularity analysis in the AGP channel for the MoA of ATPase inhibitor in the CDRP-bio dataset. Feature

z-scores distributions for CellProfiler (orange) and anomaly-based (green) representations. . . . . . . 82
4.5 Illustration of potential caveats of using weakly supervised (e.g., using the treatment as a weak label)

(A) versus anomaly-based (B) representations. (A) A treatment representation (yellow) is implicitly

becoming more similar to the control because it was guided away from another treatment (orange). (B)

Anomaly-based representations are guided away from the control. . . . . . . . . . . . . . . . . . 82
4.6 Scatter plot indicating the F1 score as a function of the number of treatments for each MoA in the

CDRP-bio and LINCS dataset. The F1 scores were obtained with the better-performing LR model trained

using the anomaly-based representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

12



List of Tables

3.1 Echo pattern parameter distributions in the simulated datasets. . . . . . . . . . . . . . . . . . . . 57

4.1 Datasets used in this study. CDRP-bio (cpg0012-wawer-bioactivecompoundprofiling) [80], LINCS

(cpg0004-lincs) [83], LUAD (cpg0031-caicedo-cmvip) [91], TAORF (cpg0017-rohban-pathways) [113].

Treatment: Chemical compounds, or ORF overexpression. Controls: number of control wells. Treatments:

number of distinct treatments. Nr: median number of replicates per treatment. . . . . . . . . . . . 68
4.2 Reproducibility results. Percent Replicating score for the CellProfiler (left column) versus the anomaly-

based (middle column) representations. The union of treatments found reproducible by either represen-

tation is shown in the right column (A ∪ C). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

13



Abstract

This dissertation investigates the application of deep learning to three scientific domains and
imaging acquisition sources: explainability for computer vision applied to natural images (Chapter
1), depth estimation for ultrasound applications (Chapter 2), and drug screening using biological
microscopy (Chapter 3). The first chapter involves the development of statistical inference graphs
for the interpretation of convolutional neural networks for computer vision based on generative
probabilistic modeling. The second chapter focuses on detecting overlapping ultrasonic echoes
using deep neural networks, improving depth estimation for non-destructive testing applications.
The third chapter introduces an anomaly detection method for image-based cell profiling. These
diverse investigations share the development and application of deep learning and computational
modeling with contributions to each of the domains under investigation.

Keywords: Deep Learning, Convolutional Neural Networks, Artificial Intelligence, Computer Vision,
AI explainability, Ultrasound, Cell Profiling
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1Dissertation in a Nutshell

Advancements in science often arise from the convergence of diverse disciplines, each offering
unique perspectives and methodologies. This doctoral dissertation explores the interpretation
and application of deep learning to advance the state-of-the-art in three distinct domains. Deep
learning has revolutionized the field of artificial intelligence, enabling machines to learn complex
patterns and relationships from vast amounts of data. In recent years, deep neural networks have
achieved remarkable success in various domains, including computer vision, natural language
processing, and speech recognition. This success can be attributed to the ability of deep learning
models to automatically learn hierarchical representations of data, capturing intricate patterns
and abstractions that are difficult to hand-craft using traditional methods. This Ph.D. dissertation
presents a comprehensive exploration of deep neural networks (DNN) with a focus on three subjects:
interpretability of the inference process of DNNs’ hidden layers activity based on probabilistic models
(Chapter 1), detection of overlapping ultrasonic echoes using fully convolutional DNNs (Chapter
2), and the development of an anomaly detection method for high throughput microscopy-based
cell phenotypic screening using deep autoencoders (Chapter 3). Throughout this interdisciplinary
research, novel approaches and methodologies are introduced to advance our understanding of
DNNs and address real-world challenges in computer vision, signal processing and biological
screening. This variety of application domains was not planned, but rather a constraint caused by
the decision of Aharon Bar-Hillel, my original Ph.D. mentor, to leave Ben-Gurion University and
move to the industry. I moved to a new lab, which required me to shift my research focus. However,
despite the disparate nature of the project, all three research topics share a common thread relying
on deep neural networks, to address complex problems in their respective domains. Due to the
differences between the chapters’ problem domains, each chapter is covered by its own background,
related work, and discussion.

The first chapter introduces a method for interpreting the hidden layer activity of convolutional
neural networks (CNN) called SIGN. Motivated by the need for better understanding of the DNN
reasoning process, generative probabilistic modeling is employed using Hidden Markov Models
(HMM) and Gaussian Mixture Models (GMM) to model and visualize the network’s intermediate
layers activity. This approach involves clustering activity patterns of interest from both fully con-
nected layers and spatial columns of convolutional layers using GMMs. Transition probabilities
between clusters of consecutive layers are estimated using HMMs for fully connected layers and a
maximum likelihood model for convolutional layers. The learned interpretation provides an ex-
planatory inference graph describing the hierarchy of activity clusters most relevant for a prediction
of a class or for explaining the decisions the network makes about specific images. The method
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unveils valuable insights into the behaviour and information flow within DNNs, along with offering
new techniques for increasing inference process transparency. An early version of this work was
presented at the top computer vision conference ECCV in 2020 and its full version was published in
the flagship computer vision journal IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) in 2022.

The second chapter focuses on detecting overlapping ultrasonic echoes in non-destructive testing.
In thin layers, the time-of-flight disparity between two ultrasonic echoes often falls within the pulse
width of the echoes, making it challenging to distinguish them. Traditional methods for separating
overlapping echoes often struggle with high echo pattern variance and severe successive overlaps.
To address this issue, a novel approach is proposed based on deep learning that treats the echo
separation problem as a detection task. The method involves estimating the time of flight of echoes
from a signal input using a fully convolutional neural network. Both the architecture of the CNN
and the generation of data rely on prior knowledge of the underlying physics of the ultrasonic
signal. The CNN architecture comprises long filters in the first layer to emulate the deconvolution of
the signal back to its fundamental delta origin, followed by multiple layers featuring shorter filters
to project the deconvolved activations to a space of clean and sparse sequences with minimal active
delta functions. The network is trained on a simulated dataset constructed based on a physical
model of ultrasound echoes, encompassing significant variations in echo parameters, noise, and
overlaps. The proposed approach yielded improvements in depth resolution compared to traditional
algorithms, as evidenced by simulations and real-world experiments, showcasing enhanced accuracy
and resilience to echo variability. This research was published in the journal Ultrasonics in 2022.

In the third chapter, anomaly detection techniques for image-based cell profiling are explored.
High-content image-based profiling is a powerful tool for identifying phenotypic differences in
cell populations. Classical measurements of profiles falsely assume independence between mor-
phological features, not fully capturing the complexity in cell organization. An alternative rooted
in anomaly detection is proposed, which takes into consideration the interrelationships among
different phenotypes. This enables the discovery of effects that each treatment has on cells while ac-
counting for the relationships among various structure-related cell features. The suggested method
capitalizes on the experimental setup of cell profiling, which typically includes a plethora of control
population data (representing negative samples of inspected cells) and a limited number of samples
for each tested treatment. A reconstruction-based autoencoder deep neural network is trained to
encode a compressed phenotypic profile based on the distribution of the control data, subsequently
decoding it to reconstruct the input profile. The vector of reconstruction errors for each treatment
serves as the anomaly representation, with features exhibiting high reconstruction errors indicating
altered dependencies within the feature representation. The superiority of the anomaly-based
representations over traditional features is demonstrated across multiple high-content image-based
datasets encompassing various cell types and treatments, showing improved reproducibility and
effectiveness in the downstream task of mechanism of action (MoA) identification. Finally, to enable
better explainability a method for interpreting the “cause” of the anomaly is introduced. This work
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is in the final stages of writing a manuscript that will be posted in the upcoming days as a preprint
on bioRxiv, and then submitted to a respected journal in the field of computational biology.

These chapters highlight the adaptability and efficacy of deep learning in tackling a wide range of
challenges spanning various domains. Although each chapter is founded on different principles, they
all share a common reliance on prior knowledge of the problem domain. Each deep learning model
propels advancements within its respective field by harnessing a prior understanding of the problem
domain. The initial chapter is grounded in probabilistic principles related to the function of deep
networks, which are pivotal for modeling the hidden layers effectively. The second chapter draws
upon prior knowledge of the underlying physics of the ultrasonic echo, essential for constructing
the simulation dataset and CNN architecture. The last chapter builds upon the underlying structure
of biological experiments as the foundation for the anomaly detection framework. In times where
deep models are often viewed as a "magic solution", this might serve as a reminder that employing
these powerful models is insufficient for advancing the state-of-the-art; it is imperative to rely on
deep-rooted foundations within the problem domain to drive meaningful progress.
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2SIGN: Statistical Inference Graphs Based
on Probabilistic Network Activity
Interpretation

Publications:

• Konforti, Y. ‡, Shpigler, A. ‡, Lerner, B., & Bar-Hillel, A. (2020). Inference graphs for CNN
interpretation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXV 16 (pp. 69-84). Springer International Publishing.

• Konforti, Y. ‡, Shpigler, A. ‡, Lerner, B., & Bar-Hillel, A. (2022). SIGN: Statistical inference
graphs based on probabilistic network activity interpretation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(3), 3783-3797.

Abstract:

Convolutional neural networks (CNNs) have achieved superior accuracy in many visual-related
tasks. However, the inference process through a CNN’s intermediate layers is opaque, making it
difficult to interpret such networks or develop trust in their operation. In this paper, we introduce
SIGN method for modeling the network’s hidden layer activity using probabilistic models. The
activity patterns in layers of interest are modeled as Gaussian mixture models, and transition
probabilities between clusters in consecutive modeled layers are estimated to identify paths of
inference. For fully connected networks, the entire layer activity is clustered, and the resulting
model is a hidden Markov model. For convolutional layers, spatial columns of activity are clustered,
and a maximum likelihood model is developed for mining an explanatory inference graph. The
graph describes the hierarchy of activity clusters most relevant for network prediction. We show
that such inference graphs are useful for understanding the general inference process of a class, as
well as explaining the (correct or incorrect) decisions the network makes about specific images. In
addition, SIGN provide interesting observations regarding hidden layer activity in general, including
the concentration of memorization in a single middle layer in fully connected networks, and a
highly local nature of column activities in the top CNN layers.

‡ Equal contribution.
‡ Equal contribution.
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2.1 Introduction

Thanks to their impressive performance, convolutional neural networks (CNNs) are the leading
architecture for tasks in computer vision [1, 2, 3]. However, current deep-learning methods suffer
from poor interpretability of the inference process conducted by their hidden layers. Due to their
end-to-end training and complex architecture, the reasoning behind their decision-making process
is hard to interpret. The lack of transparency undermines the trustworthiness and reliability of deep
networks, especially in sectors where explainability is deemed crucial, such as the healthcare and
autonomous-driving sectors. From this need emerged the research field of Explainable Artificial
Intelligence (XAI), aimed at promoting intuitive, human-understandable explanations of AI decision-
making process [4, 5, 6].

A majority of XAI techniques focus on explaining local decisions for specific images or neurons [7,
8, 9]. These methods are popular due to their simplicity and ease of use. However, this kind of
interpretation can easily miss important factors in the decision chain leading to a specific prediction.
Understanding CNN reasoning by decomposing it into layer-wise stages can provide insights about
cases of failure, and reveal weak spots in the network architecture, training scheme, or data
collection mechanism. In turn, these insights can lead to more robust networks, and allow us to
develop more trust in CNN decisions. Some efforts are made in this direction in recent years [10,
11], however it remains a pre-mature field with many challenges and opportunities ahead.

In this work, we seek to enable a better human-understanding of the deep network inference
process. As we see it, this mission requires facing several challenges:
(1) Transforming a distributed high dimensional representation into a discrete representation
amendable to human reasoning. Deep networks operate through a series of distributed layer
representations, manifested by a single activation vector in fully connected (FC) layers and a
collection of spatial activation vectors (i.e., columns) in convolutional layers. Human language,
however, is made up of discrete symbols, i.e., words, having meaning grounded by their reference in
the world of objects and their interrelations. Given the richness of a distributed representation and
the sheer size of modern networks, discretizing an internal representation may require thousands
of visual words. Hence, (2) Selecting a relevant subset of visual words and connections for a
specific analysis task (e.g., class-specific or image-specific analysis) is inherent to this endeavor. (3)
Development of a visualization system that enables understanding of the visual words and their
interrelations, while taking into account the human perceptual and cognitive limitations and display
capacity [12].

In this paper we introduce SIGN, a statistical explanation framework of the inference process
conducted by a deep neural network, based on probabilistic interpretation of network activity. A
demonstration of the SIGN framework output is shown in Fig. 2.1. In this example, the framework
provides an interpretation of a false prediction made by VGG-16, of a pineapple image to class
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Class Swing

Figure. 2.1: Explaining network errors with SIGN. An ILSVRC-2012 [13] dataset image of a pineapple (red-circled),
falsely classified by VGG-16 to the “swing” class. This is a partial inference graph with “swing” as the
inferred class at the top, and the 3 most influential visual words from a high level layer (block5_conv1
layer), forming it. The 3 visual words show what the network found to be the most important features for
classification of the inspected image. Each such word is represented using 6 images containing it, with
the visual word itself in a red rectangle. The analyzed image is presented above each visual word, with
red dots showing where this visual word is found. As seen in the graph, the image is classified based on
3 “swing”-related visual words describing “rope”, “sand” and “grass”. The full inference graph is seen in
Fig. 2.9 Section 2.4.3.

“swing”. SIGN points out what are the crucial visual words for the network’s prediction and where
these visual words occur in the image.

The SIGN framework, illustrated in Fig. 2.2, is composed of a few stages. A probabilistic model is
learned on top of the network architecture, and can be trained simultaneously with network training
or post-hoc, to generatively describe network layer activity behavior and layer-wise dependencies.
Activity vectors in each layer are modeled as arising from a multivariate Gaussian mixture model
(GMM). Layer activity in FC layers, or spatial location activity in convolutional layers, is associated
with one of K clusters (GMM components), each representing a visual word. Together, all visual
words with in the same layer forming the layer’s dictionary. Connections between visual words
of consecutive layers are modeled using conditional probabilities. For a multi layer perceptron
(MLP) network, a full model with efficient inference can be obtained using a hidden Markov model
(HMM). For convolutional layers, each spatial location has its own hidden variable. A full exact

2.1 Introduction 20



Figure. 2.2: Illustration of SIGN framework flow. (A) Modeling neural network layers as arising from a probabilistic
generative model, and forming a visual word dictionary to each modeled layer. Training the generative
model can be simultaneously with the network or post-hoc. (B) Forward pass through the modeled network
on a subset inputted test images. Calculate the co-occurrence matrix statistics for all visual words that
appear in the image. Apply Node Selection Algorithm on the matrix to obtain the most explanatory visual
words. Produce an image inference graph of words as nodes and their connection strengths as edges. (C)
The same as (B) but with a subset of analyzed images that represent a class predicted by the network.

inference is thus infeasible due to the high induced width of the resulting graphical model. Instead,
in the suggested model dependencies between neighboring words are ignored, and dependencies
among visual words in consecutive layers are described using conditional probability tables. Given
a selected subset of images to be explained, the decision process of the network can be described
using an inference graph. The inference graph levels representing the visual words used to explain
the subset of images in different layers of the network and their weighted connections. As the
full graph may contain thousands of visual words in all network layers, a useful explanation has
to find informative subgraph containing the most explanatory words for clarifying the network
decision. Therefore, we suggest a maximum likelihood based Node Selection Algorithm for finding
such informative subgraphs. Finally, based on the node selection algorithm we visualize the network
decision process explanation as an Inference Graph.

With SIGN we aim to provide an inference investigation tool for deep models with the following
contributions:

• A class-specific inference graph: The class inference graph provides a succinct summary of
the inference process toward a specific class, as it progresses through the network layers. The
connections between visual words discovered by SIGN in consecutive layers provide clear insights
into the feature aggregation process for this class.

• An image-specific inference graph: The inference graph for a specific image highlights the
visual words most contributing to a class decision on this image (see Fig. 2.1). Such a graph is
highly useful as a debugging tool to analyze network failures as it enables finding what are the
main features leading to a false class prediction, which are the layers these features appear, and
where do they appear in the input image.
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• Differences in layer activity behavior between MLP networks and CNNs: Our model demon-
strates significant differences in activity behavior between the two network types as inference
progresses through the network. For MLP networks, visual words gradually converge, from
multiple input-related words to unique class-related words. In contrast, CNN behavior remains
local and diverse even at the uppermost layers, with each class represented by a combination of
distinct multiple words.

• Overfitting capacity of a single layer: Following Zhang et al. [14], we analyze a case of extreme
overfit by learning with random labels. Our model discovers that for MLP network forced to
such extreme overfit, the overfitting transformation is concentrated in a single (the middle)
hidden layer. In such a case, our suggested tools enable, for the first time as far as we are aware,
characterizing where in the network overfit occurs.

2.2 Related Work

An important contribution of XAI methods involves explaining neural networks decisions and
internal mechanisms. Methods can be generally categorized by the scope of their explanations:
instance-level explanation methods, and internal network behavior explanation. We review below
some of the important works in this vast domain. For a more comprehensive review of XAI methods,
readers are referred to recent surveys [4, 5, 6].

2.2.1 Instance-Level Explanations

A favorable group of methods for network interpretation involves local explanations of specific data
instances or a network component. This is mainly achieved via back propagation techniques [15, 16,
7, 9, 8] and perturbation methods [17, 18, 19]. Back propagation based methods use the gradient
information back-propagated from the output prediction layer back to the input layer. Among the
popular techniques are activation maximization and attribution. With activation maximization [15,
16, 7], the input space is randomly initialized and optimized to maximize the score of a specific
feature, producing an image of what this feature is looking for. Zeiler et al. [18] introduced
deconvolution layers showing which input pattern originally induced a given activation. This is
done by creating an input map that keep the examined activation values, and set all other to zero.
Attribution methods [8, 9, 20] highlight the input regions that are most valuable for the network
prediction for a specific image. This technique was first introduced as saliency maps by Simonyan
et al. [8], that shows gradients of a class prediction with respect to an input image. Zhou et al. [20]
suggested Class Activation Mapping (CAM), a simple modification to global average pooling that
reveals how regions in an input image are correlated to a specific class with a single forward-pass.
This idea was later enhanced by Grad-CAM [9] that generalized CAM method to a broader types of
CNN models.
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Perturbation methods search for the correlation between the input and the output while the input
image is changing (i.e., perturbing). This is mostly done by occluding image pixels group and
observing the networks prediction changes. LIME [17] uses superpixel method to occlude pixels
group, then they approximating a linear model for the network behaviour which can be interpreted.
In [19], the authors search for the perturbation mask that gain the maximal effect on the network’s
output among all masks.

While such visualizations producing good local explanation and mostly are easy to implement, they
are anecdotal and insufficient for understanding the full network’s reasoning. In addition, these
methods are sensitive to input noise [21] and hyper-parameter tuning [22]. As recently shown
in [23], they are not more effective for user understanding than showing the nearest training set
examples in most cases.

Instance-level explanations can be enhanced with the addition of network architecture context,
to provide an hierarchical analysis on how the decision is propagated through the network’s
layers. Olah et al. [24] proposed a tool for visualizing the network path for a single image. They
decomposed each layer’s activations into neuron groups using matrix factorization, and visualized
each group, both by activation maximization and attribution. Then, groups from consecutive layers
were connected to form a graph structure by their weight connection strength.

The SIGN method offers instance level explanations with context of network architecture, showing
the critical features in each layer leading to classification. This forms a decision-chain of the instance
along the network layers. Feature visualizations are created based on aggregated information from
the entire training set. Visual words are represented by image patches, thus keeping the context of
real-world objects.

2.2.2 Internal Network Behavior Explanation

Some explanation efforts are aimed at promoting transparency of hidden layers behavior. One
approach tries to quantify the features by their roles across different layers and provide a layer-wise
summary of the model. Bau et al. [25] defined six types of semantic patterns (colors, textures,
materials, parts, objects, and scenes) identified by CNNs, and labeled image pixels accordingly. In
their later work [11], they increased the number of semantic concepts roles, thus gained more
fine grain feature groups. In [26], the authors present a model explanation summary where they
grouped together images with similar explanations and sub-grouped them based on similar features
that explains them. They evaluate explanation based on information theory.

Another form of network-centric XAI techniques aim to look beyond individual features and provide
a layer-wise description of inner-decision mechanism operating to produce the desired outputs.
Some methods do so by enforcing hidden features to represent meaningful representations [27,
28]. Similar to [25], Zhang et al. [27] aimed to associate filters with object part but in this work

2.2 Related Work 23



Figure. 2.3: A graphical model for MLP networks. Each orange rectangle is a layer activation vector after the ReLU
operation. Activation xl[d] of neuron d in layer l is assumed to be generated from a rectified Gaussian
density, resetting values lower than zero to zero. yl[d] is the parent of xl[d], describing the original Gaussian
density before it was rectified. hl is a hidden variable generating the hidden vector of multivariate Gaussians
Y l. hl takes Kl different states, creating a mixture of multivariate Gaussians for layer l.

they enforce the network filters to do so. Chen et al.[28] impose interpretability by encouraging
spatial columns of the topmost conv layer to represent part prototypes of a specific class, with each
prototype equated with a spatial region patch of the input image belong to the same class. Loss
terms are added to enforce between-class separation, and inner-class property.

Some works wish to explain the overall internal model behaviour without alter the network
representations. CNNVis [29] provide a model summary, with neurons in each layer clustered to
form groups having similar activity patterns. A graph between neuron clusters of subsequent layers
is then formed based on the average weight strengths over the cluster’s neurons. Hohman et al. [10]
proposed Summit, an interactive visualization tool presenting class attribution graph. This graph
visualize the aggregated top channel activations in each layer across all images within the same
class. Connections between channels in consecutive layers are quantified based on the influence
of the former channel on the latter. This graph reveals interesting and unexpected connections
between channels associated with different classes across layers.

The above methods offer a wider perspective on how the intelligent systems work. Inspired by
these works, we suggest a novel approach for hidden layers representation. We go beyond specific
features and simple clustering techniques to offer an holistic, generative model for full network
explanation.

2.3 Method

Inference graphs for an MLP, for which a full graphical model can be suggested, are presented
in Section 2.3.1. The more general case of a CNN is discussed in Section 2.3.2, and its related
graph-mining algorithm in Section 2.3.3. Models can be trained on the full set of network layers or
on a subset, indexed by l ∈ {1, . . . , L}.
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2.3.1 Inference Graphs for MLPs

A network composed of FC layers can be modeled by a single probabilistic graphical model based
on the following assumptions: (a) The activity of a layer can be modeled by a single mixture
model. (b) Conditional independence holds between the activity of layer l and activities of layers
preceding l − 1 given the activity of layer l − 1. (c) Layer activity is generated by a rectified normal
distribution [30], censored at zero according to ReLU operation. For such a network, the activity
of hidden layers is modeled by an HMM structure, enabling closed-form inference. The model
structure is shown in Fig. 2.3.

For the lth FC layer with Dl neurons, denote the activation vector as xl = (xl[1], .., xl[Dl]) ∈ RDl
.

The distribution of xl is modeled using a mixture of K l hidden states (i.e., clusters) with a
discrete hidden variable hl ∈ {1, ..., K l} denoting the cluster index. To model the ReLU operation,
each neuron activation xl[d] is generated from a rectified Gaussian distribution. The conditional
probability P (xl|hl) is hence assumed to be a rectified multivariate Gaussian distribution with
a diagonal covariance matrix. Connections between hidden variables in consecutive layers, are
modeled by a conditional probability table (CPT) P (hl|hl−1).

Using this generative model, an activity pattern for the network is sampled by three steps. First, a
path (h1, . . . , hL) of hidden states is generated according to the transition probabilities

P (hl = k|hl−1 = k′) = tl
k,k′ (2.1)

where tl ∈ RKl×Kl−1
is a learned CPT. For notation simplicity, we define h0 = {}, so P (h1|h0) is

actually P (h1) parametrized by P (h1 = k) = t1
k. After path generation, ”pre-ReLU” Gaussian vectors

(y1, . . . , yL), with yl ∈ RDl
, are generated based on the chosen hidden variables. A single variable

yl[d] is formed according to

P (yl[d]|hl = k) ∼ N (yl[d]|µl
d,k, σl

d,k), (2.2)

where µl
d,k and σl

d,k are the mean and standard deviation of the dth element in the kth component
of layer l. Since the observed activity xl[d], generated as xl[d] = max(yl[d], 0), is a deterministic
function of yl[d], its conditional probability P (xl[d]|yl[d]) can be written as

P (xl[d]|yl[d]) =
{

δxl[d]=yl[d] , yl[d] > 0
δxl[d]=0 , yl[d] ≤ 0

, (2.3)

with δ(x=c) as the Dirac delta function concentrating the distribution mass at c.
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The full likelihood of the model is given by

P (X, Y, H|Θ) =
L∏

l=1
P (hl|hl−1)P (yl|hl)P (xl|yl), (2.4)

where P (hl|hl−1), P (yl|hl), and P (xl|yl) are stated in (2.1), (2.2), and (2.3), respectively. Y, H, X

are tuples representing their respective variables across all layers, e.g., H = {hl}L
l=1. The set of

parameters Θ learned to optimize the model likelihood is

Θ =
{

{tl
k,k′}L,Kl,Kl−1

l=1,k=1,k′=1, {µl
d,k}L,Dl,Kl

l=1,d=1,k=1, {σl
d,k}L,Dl,Kl

l=1,d=1,k=1

}
. (2.5)

Training algorithm: In [31], the EM formulation was suggested for training a mixture of censored
Gaussians. We extended this idea to the HMM formulation in an online setting. Following [32], the
online EM algorithm tracks the sufficient statistics using running averages, and updates the model
parameters using these statistics. We train with mini-batches, which enables scalable learning for
large-scale networks. Training iterates between updating the running averages of the sufficient
statistics (an online approximation of the E-step), and updating the parameters based on these
averages (the M-step). This procedure is shown [32] to be consistent (i.e., finding a stationary
point of the data log likelihood with probability 1) and asymptotically efficient.

Update equations: In a batch EM formulation, model parameters are updated based on sample
statistics of interest. Each statistic is defined as the sample average 1

N

∑N
i=1 f(Xi) for a function

f(x) of interest. In the online setting, for each such function f(x), an online sample estimator is
kept, denoted here by < f(X) >. Given a batch of examples {Xi}B

i=1 and adaptation parameter
α > 0, < f(X) > is updated in iteration q + 1 by

< f(X) >q+1= (1 − α) < f(X) >q + α

B

B∑
i=1

f(Xi) (2.6)

The tracked sufficient statistics are used in the update of the model parameters as follows:

• The transition probability between hidden states tl
k,k′ update is given by

tl
k,k′ = < P (hl = k, hl−1 = k′|X, Θ) >∑Kl

k=1 < P (hl = k, hl−1 = k′|X, Θ) >
. (2.7)

The average joint distribution of clusters from consecutive layers < P (hl = k, hl−1 = k′|X, Θ) > is
a tracked statistic, computed for each example using the forward-backward algorithm[33]. For the
first layer, t1

k is updated analogously using t1
k =< P (h1 = k|X, Θ) >.
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• The mean µl
d,k for an estimated Gaussian before rectification (dropping the l index for notation

convenience) is

µd,k = < P (h = k|x[d], Θ) · ŷ[d] >

< P
(
h = k|x[d], Θ

)
>

(2.8)

with ŷ[d] defined by

ŷ[d] =
{

x[d], x[d] > 0
M1(µd,k, σd,k), x[d] = 0

The new mean is a weighted average of all examples’ y activities, with each example contributing
based on its probability to belong to the cluster. When x[d] = 0, the value of the activity prior to the
ReLU operation is estimated using the first moment of a rectified Gaussian M1(µd,k, σd,k), with µd,k

and σd,k values are taken from the previous iteration. M1(µd,k, σd,k) has a closed form solution [31]
for known mean and variance:

M1(µ, σ) =
∫ 0

−∞
x · G(x|µ, σ)dx = µ − σ

(G(−µ
σ |0, 1))

(C(−µ
σ |0, 1)) (2.9)

where G(−µ
σ |0, 1) and C(−µ

σ |0, 1) are the density and cumulative values of the normal distribution
at −µ

σ . Since ŷ[d] has two cases, two running statistics are tracked for the computation of the
nominator in Eq. 2.8: < P (h = k|x[d], Θ) · x[d]1x[d]>0 > and < P (h = k|x[d], Θ) · 1x[d]==0 >.

• The std of an estimated Gaussian density before rectification σl
d,k, dropping the l index, is updated

by

σ2
d,k = < P (h = k|X, Θ)(ŷ[d] − µd,k)2 > +Rd,k

< h = k|X, Θ >
. (2.10)

This formula can be seen as a weighted sum-of-squares and a correction factor

Rd,k =< P (h = k|x[d], Θ) · 1x[d]==0 > (2.11)

·
(
M2(µd,k, σd,k) − M1(µd,k, σd,k)2

)
.

The term M2(µd,k, σd,k) is the second moment of a censored Gaussian distribution, which also has a
closed form solution [31]:

M2(µ, σ) =
∫ 0

−∞
x2G(x|µ, σ)dx = µ2 + σ2 − σµ

(G(−µ
σ |0, 1))

(C(−µ
σ |0, 1)) . (2.12)

2.3.2 Inference Graphs for CNN

In a CNN, the activation output of the l-th convolutional layer is a tensor X l ∈ RHl×W l×Dl
, where

H l, W l, and Dl correspond to the height, width, and number of maps, respectively. We consider
the activation tensor as consisting of H l × W l spatial column examples, xl

p ∈ RDl
, located at
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p = (i, j) ∈ {{1, . . . , H l} × {1, . . . W l}}, and wish to model each such location as containing a
separate visual word from a dictionary shared by all locations. The number of hidden variables
(one per location) is much larger than in an FC layer (where a single hidden variable per layer
was used), and their connectivity pattern across layers is dense, leading to a graphical model with
high induced width, but with infeasible exact inference [34]. Hence, we turn to simpler model and
training techniques, that are scalable to the size and complexity of CNNs. In this model, activities of
different layers are modeled independently, each using a Gaussian mixture model, and transition
probabilities between clusters in consecutive layers are modeled a-posteriori (i.e., they are not part
of the generative model).

Layer dictionaries: Similarly to the full activity vector in FC layers, the activity of a spatial
column xl

p is described as arising from a GMM of K l clusters, regarded as visual words form-
ing the layer dictionary. Using a training image set ST = {(In, yn)}NT

n=1, a GMM is trained
independently for each layer of interest. While each location in layer l has a separate hid-
den random variable hl

p, the GMM parameters are shared across all the spatial locations of
that layer, i.e., a single GMM is trained using all spatial columns of layer l and all training
images. Training is done using a gradient descent procedure on mini-batches, enabling straight-
forward GPU implementation. After model training, the activity tensor of layer l for a new
example I can be mapped into a tensor P ∈ RHl×W l×Kl

holding P (hl
p(I) = k). We say that

the visual word hl
p(I) = k∗ (an activation column of image I in position p is assigned to clus-

ter k∗) iff k∗ = argmaxk P (hl
p(I) = k). Accordingly, visual word k in layer l is the cluster

C l
k = {(I, p), I ∈ ST : hl

p(I) = k} containing activations over all positions for all images in
the training set ST , where cluster k has the highest P (hl

p(I) = k).

When the CNN also contains FC layers, these can be modeled using a GMM trained on the layer’s
activity vectors. This can be regarded as a degenerate case of convolutional layer modeling,
where the number of spatial locations is one. Specifically, the output layer (XL) of the network,
containing B class pseudo probabilities (output neurons after softmax), is modeled using a GMM of
B components (the same amount as classes was set for this layer GMM components). This GMM
is not trained, and instead is fixed such that µd,b = 1 for d = b and 0 otherwise, and a constant
variance parameter of σd,b = 0.1. In this setting, cluster b of the output layer contains images that
the network predicts to be of class b.

Probabilistic connections between layer dictionaries: Transition probabilities between visual
words in consecutive layers are modeled a-posteriori. For two consecutive modeled layers l′

and l (l′ < l), the receptive field R(p) of location p in layer l is defined as the set of locations
{q = p+o : o ∈ O} in layer l′ used in the computation of xl

p. O is a set of {(∆x, ∆y)} integer offsets.
Using a validation sample SV = {In}NV

n=1, we compute for each two consecutive modeled layers
l and l′ the co-occurrence matrix N ∈ MKl×Kl′

between the visual words these two dictionaries
contain,

N(k, k′) =
∣∣∣{(In, p, q) : hl

p(In) = k, hl′
q (In) = k′, q ∈ R(p)}

∣∣∣. (2.13)
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Using N , we can obtain the following first and second order statistics:

P̂ (hl = k) =
∑

j N(k, j)∑
i,j N(i, j) (2.14)

P̂
(
hl′

q = k′|hl
p = k, q ∈ R(p)

)
= N(k, k′)∑

j N(k, j) (2.15)

=

∣∣∣{(In, p, q) : hl
p(In) = k, hl′

q (In) = k′, q ∈ R(p)
}∣∣∣

|O| ·
∣∣∣{(In, p) : hl

p(In) = k
}∣∣∣

= 1
|O|

∑
o∈O

P̂ (hl′
p+o = k′|hl

p = k)

The transition probabilities as defined above are abbreviated in the following discussion to P̂ (hl′ =
k′|hl = k). As defined, these probabilities are averaged over specific positions in the receptive field,
since modeling of position-specific transition probabilities separately would lead to proliferation in
the parameter number.

Training algorithm: The GMM parameters Θl of layer l are trained by associating a GMM layer
to each modeled layer of the network. Since we do not wish to alter the network’s behavior, the
GMM gradients do not propagate towards lower layers of the network. We considered two different
optimization approaches for training Θl:

• Generative loss—The optimization objective is to minimize the negative log-likelihood function:

LG(X l(In), Θl) = −
∑
p∈A

log
Kl∑

k=1
πl

kG(xl
p(In)|µl

k, Σl
k) (2.16)

with
Σl

k =
[
σl

1,k . . . σl
Dl,k

]
× Ieye

where G is the Gaussian distribution function, πl
k is the mixture probability of the k’th component

in layer l, and Ieye ∈ MDl×Dl
is the identity matrix.

• Discriminative loss—The probability tensor P is summarized into a histogram of visual words
Histl(X l(In)) ∈ RKl

using a global pooling operation. A linear classifier W · Histl(In) is formed
and optimized by minimizing a cross entropy loss, where W is the classifier weights vector

LD(X l(In), Θl, yn) = − log P (ŷn = yn|W · Histl(X l(In), Θl)). (2.17)

Here, yn is the true label of image In and ŷn is the predicted output after a softmax transformation.

For the sake of clarity, these two losses are separate approaches for optimizing the model’s parame-
ters. Empirical comparison between these two approaches is given in Section 2.4.3.
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For ImageNet-scale networks, full modeling of the entire network at once may require thousands of
visual words per layer. Training such large dictionaries is not feasible with current GPU memory
limitations (12GB for a TitanX). Our solution is to train a class-specific model, explaining network
behavior for a specific class b and its “neighboring” classes, i.e., all classes erroneously predicted by
the network for images of class b. The set of neighboring classes is chosen based on the network’s
confusion matrix computed on the validation set. The model is trained on all training images of
class b and its neighbors.

2.3.3 Node Selection Algorithm

Consider a graph in which column activity clusters (i.e., visual words) {C l
k}L,Kl

l=1,k=1 are the nodes,
and transition probabilities between clusters of consecutive layers quantify edges between the nodes.
Typically, this graph contains thousands of nodes and, thus, is not feasible for human interpretation.
However, specific subgraphs may have high explanatory value. Specifically, nodes (clusters) of
the final layer CL

k in this graph represent images for which the network predicted a class k. To
understand this decision, we evaluate clusters in the previous layer CL−1

k′ using a score based on
the transition probabilities P (hL = k|hL−1 = k′). The step of finding such a set of “explanatory"
clusters in layer L − 1 is repeated to lower layers. Below, we develop a suitable iterative algorithm.
Given a validation subset of images Ω = {In}N

n=1, it outputs a subgraph of the nodes that most
“explain” the network decisions on Ω, where “explanation” is defined in the maximum-likelihood
sense. We first explain node selection for a single visual word in a single image, and then extend
this notion to a full algorithm operating on multiple visual words and images.

2.3.3.1 Explaining a Single Visual Word

Consider an instance of a single visual word hl
p(I) = s, derived from a column activity location p in

layer l for image I. Given this visual word, we look for the visual words in R(p) most contributing
to its likelihood, given by (omitting the image notation I in hl

p(I) for brevity):

P

(
hl

p = s
∣∣∣{hl′

q : q ∈ R(p)
})

= (2.18)

P

({
hl′

q : q ∈ R(p)
}∣∣∣hl

p = s

)
· P (hl

p = s)

P

({
hl′

q : q ∈ R(p)
})

≈
∏

q∈R(p) P (hl′
q |hl

p = s) · P (hl
p = s)∏

q∈R(p) P (hl′
q ) .
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In the last step, two simplifying assumptions were made: conditional independence over locations in
the receptive field (nominator) and independence of locations (denominator). Taking the logarithm,
we decompose the expression and see the contribution of visual words to the likelihood:

log P (hl
p = s)︸ ︷︷ ︸

constant A

+
∑

q∈R(p)
log

P (hl′
q |hl

p = s)
P (hl′

q ) =

A +
∑

t=1,...,Kl′

∣∣∣{q : hl′
q = t, q ∈ R(p)

}∣∣∣ log
P

(
hl′

q =t|hl
p=s,q∈R(p)

)
P (hl′

q =t) . (2.19)

Denote by Ql′
t (I, p) =

∣∣∣{q : hl′
q = t, q ∈ R(p)

}∣∣∣ the number of times visual word t appears in the

receptive field of location p. We look for a subset of words T ⊂ {1, . . . , K l′}, which contribute the
most to the likelihood of hl

p = s. Thus, the problem we solve is

max
T

|T |=Z


∑
t∈T

Ql′
t (I, p) log

P
(
hl′

q = t|hl
p = s, q ∈ R(p)

)
P (hl′

q = t)

 . (2.20)

The solution is obtained by choosing the first Z words for which the score

Sl′(I, s, t) = Ql′
t (I, p) log

P
(
hl′

q = t|hl
p = s, q ∈ R(p)

)
P (hl′

q = t) (2.21)

is the highest. Intuitively, the score of visual word t is the product of two terms, Ql′
t (I, p), which

measures the word frequency in the receptive field, and log
P

(
hl′

q =t|hl
p=s,q∈R(p)

)
P (hl′

q =t) which measures

how likely it is to see word t in the receptive field compared to seeing it in general. To compute the
probabilities in the log term of the score, we use the estimations P̂ (hl = k) and P̂ (hl′ = k′|hl = k)
given by Eqs. 2.14 and 2.15, respectively.

2.3.3.2 Explaining Multiple Words and Images

The optimization problem presented in Eq. 2.20 can be extended to multiple visual words in multiple
images using column position and image independence assumptions. Assume a set of validation
images Ω is being analyzed, and a set of words S ⊂ {1, . . . , K l} from layer l has to be explained
by lower layer words for these images. We would like to maximize the likelihood of the set of all
column activities {hl

p(In) : hl
p ∈ S, In ∈ Ω}, in which a word from S appears. Assuming column

position independence, this likelihood decomposes into terms similar to Eq. 2.18:

log P

({
hl

p(In) : hl
p(In) ∈ S, In ∈ Ω

}∣∣∣{hl′
q (In) : In ∈ Ω

})
= (2.22)

N∑
n=1

∑
s∈S

∑
{p:hl

p(In)=s}
log P

(
hl

p(In)
∣∣∣hl′

q (In), q ∈ R(p)
)
.
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Algorithm 1 Inference graph building
Input: CNN CN , a set Ω of images predicted by CN to class m, network model

{Θl, P̂ (hl = k), P̂ (hl = k|hl′ = k′)}
L,Kl,Kl′

l=1,k=1,k′=1,
Z - number of allowed nodes per layer.
Output: An inference graph G = (N, E), where N and E hold clusters (nodes) and their weighted
connections (edges) in the graph, respectively.

Initialization: Push Ω through the network model to get {Ql
t,s(Ω)}L−1

l=1 (Eq. 2.24) and clusters {Cl
i}

L,Kl

l=1,i=1.
Set S = {m}, N = CL

m, and E = ∅.

For l = L − 1, . . . , 1
For t = 1, . . . , Kl, compute Sl(Ω, S, t) (Eq. 2.25)
Choose zl

1, . . . , zl
Z to be the Z clusters indices with the largest scores Sl(Ω, S, t)

Set S = {zl
1, . . . , zl

Z} and el
i,j = Sl(Ω, zl+1

i , zl
j), ∀i, j = 1, . . . Z

Set N = N ∪ {Cl
zl

i

}Z

i=1
and E = E ∪ {el

i,j}Z,Z

i=1,j=1

Repeating the derivation also given in Eqs. 2.18, 2.3.3.1, and 2.20 for this expression, we get a
similar optimization problem,

max
T

|T |=Z


∑
t∈T

∑
s∈S

Ql′
t,s(Ω) log

P
(
hl′

q = t|hl
p = s, q ∈ R(p)

)
P (hl′

q = t)

 , (2.23)

where Ql′
t,s(Ω) is the aggregation of Ql′

t (I, p) over multiple positions and images

Ql′
t,s(Ω) =

N∑
n=1

∑
{p:hl

p(In)=s}
Ql′

t (In, p). (2.24)

That is, Ql′
t,s(Ω) is the number of occurrences of word s with word t in its receptive field in all the

images in Ω. The solution is given by choosing the Z words in layer l′ for which the score

Sl′(Ω, S, t) =
∑
s∈S

Ql′
t,s(Ω) log

P
(
hl′

q = t|hl
p = s, q ∈ R(p)

)
P (hl′

q = t) (2.25)

is maximized. Like the score in Eq. 2.21, the contribution of word t to the explanation of a single
word s is a product of its frequency in the relevant receptive fields and its discriminative value
term.

The inference graph is generated by going over the layers backwards, from the top layer, for which
the decision has to be explained, and downwards towards the input layer, selecting the explaining
nodes using the score of Eq. 2.25. See Algorithm 1 for details.
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2.3.4 Visualization Techniques

We consider visualization at several levels starting from simple visual word to path inference, and
relating to the two types of networks.

2.3.4.1 Simple Cluster

We visualize a cluster C l
k by showing the m examples (m = 6) with the highest P (hl

p(I) = k)
across (I, p) ∈ Sv. For FC layers, for each representative example, the full image is shown. For
convolutional layers, visual word examples are typically sub-regions of the input image (if the
receptive field does not cover the image entirely). For receptive fields larger than 25% of the image
size, the visual word occurrence is visualized by drawing the relevant image with a red rectangle
around the relevant receptive field (see Fig. 2.1). When the receptive field is smaller, only the
region of the receptive field is shown instead of the entire image.

2.3.4.2 Cluster as a Decision Junction

In MLP networks, the entire layer activity is assigned to a single cluster. We consider such a cluster
as a “decision junction", where a decision regarding the consecutive layer cluster is made. For the
visualization of such a decision, the activity vectors assigned to C l

k are labeled according to their
cluster index in the consecutive layer, thereby forming sub-clusters. We use linear discriminant
analysis (LDA) [35] to find a two-dimensional projection of the activities that maximizes the
separation of the examples with respect to their sub-cluster labels. To understand the semantics of
the sub-clusters, we draw the three most typical representative examples from each sub-cluster near
the sub-cluster centroid. We define most typical examples as the three minimal l2 distance images
to the sub-cluster center (see Fig 2.4).

2.3.4.3 Inference Graphs

For MLP networks, the inference path of a specific example I contains a single visual word at each
layer. It can be defined by the maximum a-posterior (MAP) cluster sequence, i.e., the sequence
H = (h1, ..., hL) satisfying

max
h1,...,hL

log P (h1, ..., hL|X(I)). (2.26)

H can be found using the Viterbi algorithm [36]. The path nodes are visualized using the decision
junction technique of Section 2.3.4.2.

For CNNs, multiple spatial words are active at each layer. We use the technique explained in
Section 2.3.3.2 (Algorithm 1) to generate inference graphs highlighting the main active words.
Such graphs can be built for an entire class by choosing the input Ω of Algorithm 1 to be the set
of all images predicted to the class, or for a single example. In the visualization of such graphs,
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Car fc-2 fc-3 fc-4

→ → → −→ Truck

“9” fc-1 fc-2 fc-3 fc-4

→ → → → −→“4”

Figure. 2.4: Two inference paths in MLP. We show the main decision junctions for an example six-layer MLP network.
The analyzed examples are presented on the left. Cluster representatives are chosen using the l2 metric.
In each decision junction, the points of the sub-cluster chosen by the example are marked with full circles
in cyan (top) blue (bottom) Top: The path of a misclassified CIFAR10 car example is shown. The main
decision points occurred in layers fc-2 – fc-4, with the critical decision made in layer fc-3 where the abnormal
appearance of the example misled the network to consider the car as a truck. Bottom: The path of a
misclassified MNist ”9” digit example is shown. The input image traversing main decision clusters through
layers fc-1 – fc-4, where the main flawed decision is made in layer fc-3, where the open head of the “9”
image misleads the network to consider as “4” digit.

each visual word is displayed using its m most representative spatial examples in the validation set.
Connections between words are characterized by their contribution to the log-ratio component in
the maximum likelihood score (Eq. 2.25, right term).

For inference graphs of a specific image I, node visualization also shows all the spatial locations in
I belong to the corresponding visual word.

2.3.5 Method Limitations and Assumptions

The probabilistic model presented, requires 2DlK l+K l additional parameters for each new modeled
layer. As we use a GMM for activations modeling, a single forward pass calculates the conditional
probability of each spatial location over the K l modeled Gaussians. This yields an activation tensor
size W l × H l × K l. Since K l typically grows linearly with the number of classes whose inference
is modeled, the model is less suitable for modeling many classes simultaneously. Furthermore, in
backward steps, the derivative of a Gaussian pdf is calculated with some additional computational
cost. However, if training is done post-hoc, typically only ∼20 epochs are required until model
convergence.

In order to enable a feasible probabilistic model, some assumptions were made in SIGN. The
most prominent is the assumption of independence of consecutive layers and of spatial columns
activations. This is not valid since the receptive fields of close activations overlap, and they are
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propagated from the same regions in lower layers. However, such simplifications are necessary for
modeling each layer separately using a GMM, as well as calculating the gain score of a single visual
word (Eq. 2.18). A second simplifying assumption is the use of a diagonal covariance matrix in
the GMM components, required to avoid an O(KD2) parameter complexity. This amounts to an
independence assumption between different maps within the same layer.

While these simplifying assumptions have been made, the resulting model enables statistical
inference, and provides a useful XAI framework.

2.4 Results

2.4.1 Implementation Details

The HMM for MLP formalism was tested by training fully connected networks on the MNIST [37]
and CIFAR10 [38] datasets, containing 10 classes each. The networks included six layers with the
first five containing 1, 000 neurons each (the last layer has 10 neurons according to the number of
classes). Based on a preliminary evaluation, the number of visual words K l was set at 40 for all
layers.

CNN models included ResNet20 [39] trained on CIFAR10, and VGG-16 [8] and ResNet50 trained
on the ILSVRC 2012 dataset [13]. For ResNet20, the output of all add-layers after each skip
connection were modeled, as these outputs are expected to contain aggregated information. For
ResNet50, there are 16 add-layers and the output of add-layers 3, 7, 13, and 16 were modeled. For
VGG-16, the first convolutional layers at each block were modeled (block1_conv1,..., block5_conv1).
The numbers of visual words were set at 60, 100, 200, 450, and 1, 500 for layers 1–5, respectively,
according to the GPU memory limitation.

In all experiments and modeled layers, the GMM’s mean parameters were initialized using K l

randomly selected examples. The variance parameters were initialized as the variances computed
from 1, 000 random examples. Prior probabilities were uniformly initialized to be 1

Kl .

2.4.2 Inference Modeling in MLP networks

Sequential path. Fig 2.4 depicts how inference paths, drawn as sequences of decision nodes, are
useful for error diagnosis. In Fig. 2.4 (top), a path of an erroneous ”car” example in the CIFAR10
network is partially presented. The sub-clusters containing the example are marked with full cyan
circles. While layers fc-2 and fc-4 primarily make decisions based on color, the wrong decision
leading to the mis-classification of the car as ”truck” is made at layer fc-3. The example’s cluster in
layer fc-3 contains six sub-clusters, leading to car and truck clusters in the consecutive layer. At
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MLP

CNN

Figure. 2.5: Cluster development across layers. Cluster similarity matrices for increasing layer indices in MLP and
CNN networks trained for CIFAR10 classification. In each matrix, Euclidean distances between cluster
centers for clusters of a single layer are shown. Clusters are ordered by their dominant class (clusters with
dominant class 1, followed by all clusters with dominant class 2, etc.). Layer index and average cluster
purity (%) are shown above each matrix. Top: MLP activity. Growing similarity between clusters with the
same dominant class can be seen by the appearance of a block diagonal structure, from layer 3 onwards.
This indicates convergence toward a single class-specific representation as layers progress. Bottom: CNN
activity. Clusters of add-layers of ResNet blocks 1, 3, 5, 7 and 8 are presented. Here, no similarity is formed
with layer growth; each class is represented by multiple localized visual words, which have unrelated
activity patterns.

this point, the example was wrongly associated with the sub-cluster representing ”truck” due to its
exceptional rear appearance, resembling the appearance of a truck front. From this point onwards,
the path is associated with ”truck” clusters, up until the classification layer. In Fig. 2.4 (bottom), a
path of an erroneous ”nine” example in the MNIST network is partially presented with full blue
clusters. Correct network decisions are made in layers fc-1 and fc-2, where the network associates
the example with primary "nine" sub-clusters. The wrong decision of the network is made in layer
fc-3, where it decided to "send" the example to a ”four” cluster in layer fc-4, continuing with this
pattern up until the classification layer.

Cluster similarity development across layers. Progressing through FC layers, activity clusters
tend to become more class oriented, i.e., dominated by examples from a single class. Furthermore,
these clusters become increasingly similar with layer index progression, indicating convergence of
class examples toward a single class-specific representation. For each cluster, we define its class
naturally as the class whose examples are the most frequent among the cluster examples, and the
class dominance index is the percentage of dominant class examples. In Fig. 2.5 (top) cluster purity
and inter-cluster distances are shown for the CIFAR10 FC network layers. The similarity of clusters
representing the same class gradually increases in layers 3-5, as evident from the emerging block
structure. It can be observed that a significant portion of the training occurs in the middle layer of
the network, specifically in the transition between the third representation (last layer of the first
half) and the fourth (first in the second half). This phenomenon was enhanced in the case of severe
overfit discussed below.
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Figure. 2.6: Cluster development for an extreme overfit case. Cluster distances and average purity for a network
trained with random labels are shown. Top: Cluster similarity matrices for layers 1-5. Bottom: Typical clus-
ters at these layers. For each cluster the (pseudo) label histogram is shown, as well as some representative
cluster images. An abrupt transition from input-dominated to output-dominated representation occurs in
the transformation between the third and fourth layers.

Overfitting capacity in a single layer. It is known that networks can be trained to an extreme
overfit condition by using randomly generated labels in training [14]. The resulting classifier has
a training error of 0, meaning that it had successfully memorized a mapping between all training
images to their pseudo labels, but its generalization error is of chance level. We utilize our model to
understand how this memorization mapping is formed. A six FC-layer network was trained on the
60,000 examples of the MNIST data with random labels, until reaching a zero training error. In
Fig. 2.6, the similarity matrices between cluster centers for layers 1–5 are shown (top), with typical
clusters at each layer (bottom), presented using their label histograms and representative images.
Surprisingly, one can observe a concentration of the network overfit behavior in a single layer
transformation between the third and fourth layers. In layers 1 − 3, clusters are input related. They
contain images with similar appearance, hence, with similar true labels (and uniformly distributed
pseudo labels). These clusters are not close in the Euclidean sense. In Layer 4, there is a sharp
transition to clusters which are completely (pseudo) label dominated, as indicated by their class
purity (histogram) and block structure in the similarity matrix. The fact that the memorization of
the full data (60, 000 instances) concentrates almost completely at a single transformation in the
middle of the network (between layers 3 and 4) is a novel unexpected observation, for which we do
not currently have a good explanation.

2.4.3 Inference Modeling in CNNs

Loss and dictionary sizes. The discriminative quality of a visual dictionary can be quantified by
using it to form word histograms, then checking the error of a linear classifier on this representation
(a bag-of-words methodology). Fig. 2.7(Left) shows the errors obtained for dictionaries trained
with losses LG (2.16) and LD (2.17) on intermediate convolutional layers of a ResNet20 network
on CIFAR10. The graphs show error rates as a function of the layer index and dictionary size. It can
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Figure. 2.7: Classification accuracy analysis as a function of dictionary size and layer depth. Error rates of linear
classifiers, based on cluster/visual word histograms are shown. All experiments conducted on five ResNet20
conv-layers, trained on CIFAR10. Left: Error rates based on SIGN generative and discriminative loss
functions (Eqs. 2.16 and 2.17), as a function of dictionary size. Right: Error rates of SIGN clustering
method and plain clustering based on the maximal active channel (see text for explanation).

be seen that errors decrease with the layer index (from 1 to 9), reaching the original network error
of 0.088. As expected, the discriminative loss LD, whose minimization directly decreases the error,
leads to a higher accuracy than the generatively-optimized loss. Therefore, all models presented
below were trained with the LD loss. In addition, the error rate decreases monotonically with the
dictionary size for all layers, but the gain from dictionary sizes larger than 500 is minor in most
cases.

To validate SIGN clustering scheme, the suggested representation’s accuracy is compared to a
baseline clustering method, in which clusters correspond to channels of the output tensor. In
the baseline method, each column activation xl

p is assigned to a cluster based on its maximal
activity channel. The cluster histogram is then fed to a linear classifier in the same procedure as
mentioned above. Error rates of SIGN representations are shown compared to those of the max
channel clustering representations across the modeled layers in Fig 2.7(Right). For SIGN method,
we present the error rate based on 500 visual words in all modeled layers, both for discriminative
and generative losses. For max channel clustering method, we used the discriminative loss (i.e.,
cross-entropy based on clusters bag-of-words). The discriminative GMM loss produced the lowest
error rate across all layers, with significant margin over the plain channel-wise clustering. Relative
improvement from the baseline technique ranges from 20% in lower layers, up to 45% in the highest
layer add_9.

Cluster development across layers. Fig. 2.5 (bottom) shows the cluster distance matrix for several
convolutional layers of a ResNet20 network trained on CIFAR10. Unlike in MLPs, learned clusters
represent activity at specific spatial locations. Even though receptive fields of clusters from advance
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Class Pineapple

Figure. 2.8: Pineapple inference graph. The graph is generated by training a model on the ”pineapple” class and its
neighboring classes. The top node is a visual word of the output layer, representing the predicted class
“pineapple”. The lower levels in the graph show the three most influential words in preceding modeled
layers (block5_conv1, ..., block1_conv1). Visual words are manifested by the six representative examples
for which P (hl = k|xl

p) is the highest. For modeled layer block5_conv1, examples are presented by showing
the example image with a rectangle highlighting the receptive field of the word’s location. For lower layers,
the receptive field patches themselves are shown. Images are annotated by their true label. Arrows are
shown for the two most significant connections for each lower visual word. When the log-ratio term (right
element in Eq. 2.25) is positive, it is colored (1) black: 0 < log-ratio < 1, (2) light green: 1 ≤ log-ratio < 2,
(3) mild green: 2 ≤ log-ratio < 3, or (4) dark green: 3 ≤ log-ratio. In addition, a tag above each visual
word was added by the authors for convenience. The figure is best inspected by zooming in on clusters of
interest.
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Class Swing

Figure. 2.9: An image inference graph of an erroneous image. An image inference graph for a pineapple image
wrongly classified to the class "swing”. The model is trained using "pineapple" and its neighboring classes
(same as in Fig. 2.8), where the neighbor class "swing” is included. The graph is generated by applying the
node selection algorithm (Section 2.3.3) to a set Ω containing this single erroneous image. The analyzed
image is shown on the top of each cluster node, with red dots marking spatial locations assigned to the
cluster. In the top node, the pineapple object is marked in red circle for clarification.
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layers cover the entire input space, there is no apparent similarity between clusters with the same
dominant class. This indicates that activity columns of advanced layers remain local, an observation
also supported by the inference graph visualizations shown below. While clusters do become more
class specific, they are less specific than in the MLP network, and the final classification is based on
several class-specific words appearing simultaneously in different image regions.

Class inference graph. An example of a class inference graph for the class “pineapple” in VGG-16 is
presented in Fig. 2.8. This graph is generated by training a clustering model on the “pineapple” and
related classes (see Section 2.3.2), then applying the node selection algorithm (Section 2.3.3) to the
set Ω of pineapple images included in the validation set. The graph shows that the most influential
words in the top convolution layer can be roughly characterized as “grassy-head”, “pineapple-body”,
and “rough-round-edge”. The origins of these words can be traced back to lower layers. For
example, “grassy-head” is composed of word capturing mostly “lengthy-vegetation” in the layer
below. The “pineapple-body” is composed of words contain “vegetation” types and “cross” textures
(block4_conv1) which are in turn generated from words describing mostly green and yellow textures
and shapes (block3_conv1).

Image inference graphs. Fig. 2.9 shows an image inference graph for a pineapple image wrongly
classified to the “swing” class. Using the inference graph, we can analyze the dominant (representa-
tive) visual words that led to this erroneous classification:

• block5_conv1 (top layer): The visual words connected directly to ”swing” class, hence, causing
the error, can be characterized as “grass/foliage-texture”, “sand”, and “vertical-rope”. Such words
are indeed statistically related to swing presence in images, and many map locations in the
inspected image are assigned to them.

• layers block4_conv1 and block3_conv1: The “vertical-rope” (block5_conv1) originates from a
similar visual word, “vertical-stripe”, of layer block4_conv1, and this in turn depends strongly on
the “isolated-vertical-line” word in layer block3_conv1. The foliage word (block5_conv1) mainly
originates from the “grassy-ground” word in layer block4_conv1, which in turn heavily depends
on the two “ground-structure” and “grass-structure” words in layer block5_conv1.

• layer block2_conv1: The main explanatory words are green and bright vertical edges and lines,
which are combined to construct the ”isolated-vertical-line” and ”grass-structure” words in layer
block3_conv1.

In Fig. 2.10, we show part of the inference graph for a successfully classified zebra image, focusing
on the bottom three layers. The gradual development of discriminative stripe-based features can
be seen. Visual words in block3_conv1 (top layer) are each characterized by a single orientation:
vertical (left), leaning to the right (middle), or leaning to the left (right). These words are less
sensitive to spatial frequency. They abstract over the spatial frequency by combining words from
layer block2_conv1 that mostly differ w.r.t their line spatial frequency and edge patterns. In layer

2.4 Results 41



Class Zebra

Figure. 2.10: Partial image inference graph of a correctly classified zebra image. The figure presents only the main
contributing visual words from the three bottom modelled layers.

block1_conv1, we encounter the edge feature patterns composed to create the words of layer
block2_conv1.

In Fig. 2.11, we show partial inference graphs for ResNet-50. On the left, upper nodes from
the inference graph of “pineapple” image from Fig. 2.9 are shown. Unlike VGG-16, ResNet50
successfully classifies this image. As can be seen in layer add_16, ResNet50 successfully detects
the pineapple location in the image (marked in green circle), where both visual words presented
contain strong “pineapple” features. On the right, we show upper nodes of the ResNet-50 inference
graph for the “zebra” image from Fig. 2.10, successfully classified also by ResNet-50. The top word
shown usually captures the zebra’s head, with its receptive field center located on the neck. This
"zebra-head-neck" visual word is formed from the bottom-left word representing a near-head stripes
texture, and the bottom-right word which captures a diamond shape located between the zebra’s
eyes. Both words are discriminative, as indicated by their log-odds score (higher than 2).
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Figure. 2.11: Sub-graph inference for ResNet50. Left: The pineapple image wrongly classified to class "swing" in
VGG-16, presented in Fig. 2.9, is correctly classified to "pineapple" class in ResNet50 (the pineapple object
is marked in green circle). The sub-graph presents the visual word from the top layer (add_16) connected
to a visual word from the lower layer (add_13). Right: The zebra image from Fig. 2.10, correctly classified
in VGG-16, is correctly classified in ResNet50 as well. The sub-graph includes a visual word from the top
layer (add_16) aggregated from two visual words from the lower layer (add_13).

2.4.4 Biased Data Experiment

A user experiment with human subjects was carried in order to test whether SIGN can effectively
enable detection of artifacts in the data. Specifically, SIGN was tested if it enables a user detection
of class-specific artifacts using class inference graphs. That is, we injected class-specific biases in the
data where all images of a certain class were identified with a unique reoccurring artifact. For the
experiment, we trained five ResNet20 models. One was trained to classify CIFAR10 (baseline), and
four others were trained with CIFAR10 versions where images were corrupted with watermarks.
In each experiment with corrupted data, a single purple English letter was placed at a random
position in images of 2 classes of the 10. In two of the experiments, images contained clearly
visible opaque watermarks, and in the remaining two experiments images contained hard-to-detect
transparent (α = 0.5) watermarks. Class inference graphs were formed for a couple of classes
in each experiment, and users were asked to determine using the graph whether the data of the
corresponding experiment is clean or corrupted. Since SIGN finds features associated with a certain
class, we expected the distinctive features to be found by the graph.

A total of 60 subjects of different ages and backgrounds volunteered to participate in the experiment.
Each participant was presented with 16 inference graphs. Among the 16 graphs, 4 graphs were
produced from clean data, 6 from a model trained with opaque watermarks, and 6 with transparent
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Figure. 2.12: Biased data experiment results. Users were asked to determine whether inference graphs shown to them
contain corrupted data. The graphs shown were produced using ResNet20 trained either with clean data
(blue), or with opaque/transparent watermarks induced in 2 classes of CIFAR10. For the datasets with
watermarks, users were shown inference graphs of corrupted classes (green) and non-corrupted classes
(orange). Users easily detected corruptions in class inference graph of classes stained with watermarks.
When shown inference graphs of non-corrupted classes from the same corrupted dataset, the user accuracy
is lower, especially with transparent watermarks.

watermarks. Among the 12 graphs corrupted with watermarks, we presented 6 graphs from the
corrupted classes and 6 graphs from the non-corrupted classes.

Experiment results are shown in Fig 2.12. The accuracy of users is shown for each bias scenario.
Participants classified clean data correctly with 90% accuracy. For graphs with opaque watermarks,
participants found corruption with 93% accuracy when presented with class inference graphs of the
corrupted class and detect corruption with 70% when shown inference graphs of the non-corrupted
class. This difference intensifies with transparent watermarks, where watermarks are less visible.
90% of the participants correctly classified the data as corrupted when shown the corrupted class
inference graphs and 53% when shown class inference graphs of non-corrupted classes.

When producing class inference graphs of corrupted classes (Fig 2.13), the SIGN model finds clear
watermark-related visual words in all modeled layers as a strong feature of the class. It can be
observed that the red center point of the receptive field patch is always located in proximity to
the watermark. In upper layers add_6 and add_8, it can be seen that without the red center point,
pointing at the watermark location, it is difficult to detect these type of corruption. When producing
graphs of non-corrupted classes, watermark-related visual words do not appear in lower layers, and
the users find it harder to detect watermarks.

For the suggested experiment, where images of an entire class are contaminated by a unique
watermark, we can expect that attribution methods will detect the watermark. Indeed, as shown
in Figure 2.14, Grad-CAM [9] deployed on the last convolutional layer of ResNet20 highlights the
watermarks in stained classes. However, Grad-CAM visualization only analyzes the impact of the
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Class Truck

Figure. 2.13: Corrupted data debugging with SIGN. Class inference graph of "truck" class from ResNet20, trained on
biased CIFAR10. The data was corrupted by inducing 2 classes with transparent watermarks (α = 0.5) at
random places. The above graph shows the "truck" class inference graph in an experiment where classes
"truck" and "cat" were corrupted with purple letters "T" and "A" respectively. It is recommended to zoom in
for better inspection.
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(a)

(b)

Figure. 2.14: Attention maps demonstration on biased data. (a) Examples of CIFAR10 images corrupted with
transparent watermarks along with their (b) corresponding Grad-CAM [9] heatmaps.

final convolutional layer on the decision. The SIGN method provides deeper analysis by enabling
understanding of the full inference process through the hidden layers based on the statistical analysis
of the full training population. Such analysis enables understanding semantics of error sources
(Figure 2.9), feature development (Figure 2.10), and even identification of layers responsible for
overfitting (Figure 2.6).

2.5 Conclusions

In this paper, we introduced SIGN, a new approach for interpreting hidden layers activity of deep
neural networks based on learning activity cluster dictionaries and transition probabilities between
clusters of consecutive modeled layers. We formalized a maximum-likelihood criterion for mining
explanatory clusters, and an algorithm for the construction of inference graphs with manageable
sizes. Inference graphs can be constructed for entire classes, to understand the general network
reasoning for this class, or for specific images for which error analysis may specifically be sought.

The tools developed here can be used to verify the soundness of the network reasoning and to better
understand the network’s hidden mechanisms, or conversely, reveal weaknesses and main error
causes. Network debugging is currently a difficult and daunting task, and we believe the suggested
tools may be a useful component in a developer’s debugging toolbox. Beyond its utility in network
interpretation and debugging, the suggested approach and tools revealed several surprising network
behavior patterns, such as the extreme locality of activity columns in top CNN layers, and the
concentration of memorization in a single intermediate middle layer in fully connected networks.

Several interesting avenues are open for future work. One such avenue may be re-training more
explainable networks by enforcing, during training, only activity of clusters and connections with
high explanatory value. Another direction is to use the models in a task-transfer scenario. Network
refinement for a new task may be constrained to use only relevant activation clusters, as determined
by a human observer. In this way, a human may use the suggested tool to define a relevant prior
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for the new task. Finally, we may try to design explanatory capability that goes beyond statistical
analysis and maximum-likelihood justification, and into causal analysis based on intervention.
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3Detection of Overlapping Ultrasonic
Echoes with Deep Neural Networks

Publications:

• Shpigler, A., Mor, E., & Bar-Hillel, A. (2022). Detection of overlapping ultrasonic echoes with
deep neural networks. Ultrasonics, 119, 106598.

Abstract:

Ultrasonic Pulse-Echo techniques have a significant role in monitoring the integrity of layered
structures and adhesive joints along their service life. However, when acoustically measuring thin
layers, the resulting echoes from two successive interfaces overlap in time, limiting the resolution
that can be resolved using conventional pulse-echo techniques. Deep convolutional networks
have arisen as a promising framework, providing state-of-the-art performance for various signal
processing tasks. In this paper, we explore the applicability of deep networks for detection of
overlapping ultrasonic echoes. The network is shown to outperform traditional algorithms in
simulations for a significant range of echo overlaps, echo pattern variance and noise levels. In
addition, experiments on two real adhesively bonded structures are conducted, demonstrating
superiority of the network over traditional methods for layer thickness estimation.

3.1 Introduction

Ultrasonic pulse-echo methods have been widely used in the analysis of thickness and bond quality
of layered materials in the Non-Destructive Testing (NDT) domain [40]. With these methods, an
ultrasonic transducer sends an ultrasonic pulse and receives the reflected echoes from interfaces in
the inspected sample. The arrival time of reflected echoes indicate the position of the interfaces,
while amplitudes are used to evaluate the interface condition. However, the performance of these
methods is limited for thick layers in which successive echoes do not overlap in time. Such overlap
occurs when the time-of-flight difference (TOFD) in the layer is shorter than the pulse width,
forming an axial resolution problem. In this case, simple derivation of individual echo parameters
is not possible. An additional challenge often posed in this respect is reverberating waves from the
inspected layers, forming successive overlaps.
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(a) (b) (c) (d)

Figure. 3.1: Illustrations of ultrasonic overlapping echoes (top) along with their envelopes and TOFs (bottom). (a)
Minor overlap, (b) major overlap, (c) succesive overlaps, and (d) overlap with a low-amplitude echo.

Large overlaps between echoes create a difficult pattern recognition problem. First, it is difficult to
understand how many echoes are involved. Second, it is difficult to determine their exact time-of-
flight (TOF). An illustration of several difficult cases of overlap detection is shown in Fig. 3.1. One
way to overcome this problem would be the use of high frequency, wideband transducers, which
reduce the temporal pulse width and therefore enhance the resolution between successive echoes.
However, due to increased attenuation, higher frequencies provide less penetration through the
material layers.

Another difficulty arises when echoes are not identical, and their shape is not fully known a-priory.
While the echoes are similar to a prototypical pulse originally sent by the transducer, they may have
wide variance in their phase, center frequency, width and amplitude. These variations are caused
by several physical reasons, including frequency depended attenuation and dispersion.

Numerous methods were suggested over the past several decades to solve this task. A simple and
classical technique for solving overlapping echoes is by the amplitude spectrum method [41, 42],
where a signal containing overlapping echoes is separated by the minima in the frequency-domain.
This method is suitable for estimating the TOFD of a single layer embedded between two thick
layers. However, it is not situated for separation of echoes caused by several unknown layers, and
can also be sensitive to noise, especially when the resonance minima is at the high end of the
bandwidth where the Signal-to-Noise Ratio (SNR) is low. Another approach is model-based signal
decomposition by estimation of the echo parameters [43, 44]. While this approach is rather simple
and does not rely on a reference signal, it can only converge to a local minimum, thus is highly
depended on a good initialization. Moreover, this approach usually requires the number of echoes,
composing the signal, to be known in advance.

Another popular approach is using sparse signal representation (SSR) methods, otherwise known
as dictionary-based methods [45, 46, 47, 48]. These techniques have been widely used for
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ultrasound echoes separation thanks to their efficiency in adaptive signal decomposition [40].
A major limitation of these techniques arises with growing variance in the echo patterns. To
enable successful detection, the dictionary might require multiple values for each parameter, and
a Cartesian product of the values used for multiple parameters. Dictionary size hence grows
exponentially in the number of parameters, which leads to slow detection and higher false alarm
rate.

Convolutional neural networks (CNNs) [49] have emerged as a promising direction for a variety of
complex pattern recognition problems, and in recent years were adopted in the signal processing
domain to solve sequence processing problems like text-to-speech [50], music synthesis [51, 52]
and speech enhancement [53, 54, 55]. Contrary to the classical inverse methods which rely solely
on a proximal physical model and simple priors, these methods are learned from collected data in
which ground-truth reconstructed signals are known for measurement examples. They hence enable
learning more complex data-dependent priors and predictions. In image recognition, convolution
layers were shown to successfully model complex features and object parts [56]. Similarly, such
layers can potentially model echo parts and overlapping echoes, and learn to reconstruct overlaps
with different shapes.

Fundamentally, the basic building blocks in CNN architecture, convolutions, are well suited for the
inverse operation taking a signal to its generating delta function – a deconvolution task. In previous
studies, networks were shown to successfully embed traditional inverse iterative algorithms into
layered CNNs [57, 58]. In addition, CNNs can be effective for modeling noise inflicted by detector
sensitivity and exhaustion, as demonstrated by signal denoising networks [53, 54, 55]. Recently Li et
al. [59] utilized a deep learning framework to separate overlapping ultrasound echoes and estimate
the thickness of buried pipelines. Their solution is shown to improve TOFD estimation, however
it suffers from several limitations. In their work, two networks are trained independently, solving
several separate sub-problems. The first network segments the signal, including two overlapping
echoes, into two separate signals. The second network is applied to each signal in isolation and
finds the echo’s TOF. Both networks used are rather heavy-weighted considering the needs of the
problem, rendering slow training and inference.

In this paper, we suggest a simple network which solves the problem end-to-end as a detection
problem. We construct a lean, yet effective, deep network for the overlapping echoes detection
task. Unlike the method of [59], which is limited to two overlapping echoes, our proposed network
solves a general detection problem, with unknown number of overlapping echoes and varying echo
patterns. The proposed CNN framework is composed of long filters in the first layer to simulate the
deconvolution of the signal back to its origin delta, followed by several layers with short filters to
project the deconvolved activations to the space of clean and sparse sequences with few active delta
functions. The training process is conducted with a simulated dataset, created based on a physical
model of the ultrasound echoes, with significant variance in echo parameters, noise and overlaps.
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The proposed network is compared to competing methods on simulated test datasets and on two
physical phantoms taken from different materials. The network achieves high detection rates
in adverse conditions including high echo pattern variance and severe successive overlaps. Our
simulation experiments show that the network is preferable to competing algorithms in a wide
range of signal overlap and SNR levels, and enables more accurate detection. With the physical
phantoms, the network was tested and compared to competing algorithms at the task of layer
thickness estimation from ultrasonic scans. The results show the network enables higher axial
resolution, and provides more stable and accurate prediction then competing methods.

3.2 Problem Formulation and Related Work

Traditional signal processing methods model the measured signal y(t) using a linear time-invariant
convolutional model of the form

y(t) = d(t) ∗ x(t) + e(t), (3.1)

where ∗ denotes the linear convolution operator, d(t) is the transmitted ultrasonic pulse, x(t) is
the inspected object reflectivity, and e(t) is a Gaussian noise function. Deconvolution of x(t) given
y(t) and d(t) is an ill-conditioned problem since d(t) is usually a narrow-band signal. Therefore,
one should enforce some prior on x(t) to obtain de-convolution results with a physical meaning.
For the ultrasound application, strong echoes are expected only from interface locations between
two materials with different impedance. Hence x(t) is comprised mainly of zeros, and a sparsity
constraint on x(t) makes a good prior. The common way to enforce this constraint is by using the
"sparse spike train" model [60, 61, 47]

y(t) = d(t) ∗


M∑

m=1
xmδ(t − τm)

 + e(t), (3.2)

where δ(t) is the Dirac delta-function, M is the number of echoes, and xm, τm are the amplitude
and time of flight of the mth echo. Model (3.2) defines all the echoes to be of the same form
xmd(t − πm), hence it can only be used when the attenuation is negligible and pulse shape does not
significantly vary with time. A more flexible model [43], where each individual echo may have a
unique shape, can be defined by

y(t) =
M∑

m=1
xmd(θm, t − τm) + e(t). (3.3)
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Here, d(θm, t) represents the mth ultrasonic pulse shape, modeled by the parameters θm, and pulse
shape is allowed to vary among echos.

Traditionally, {xm, τm,θm}M
m=1 is recovered from y(t) using dictionary-based methods. This is

achieved by seeking a sparse vector x satisfying the relationship y = Dx + e where D ∈ Cn×m

is an overcomplete dictionary composed of {Φi}m
i=1 atoms in columns, with Φi ∈ Cn and m > n.

Matching Pursuit (MP) [45] greedily constructs successive approximations of the signal by finding
maximal projections of the signal residual on atoms of D. Orthogonal Matching Pursuit (OMP) [46]
improves MP by adding a least-square minimization to each step of MP. Support Matching Pursuit
(SMP) [47], specifically designed for resolving ultrasonics overlapping echoes, extends MP by
adding in the iterative stage a relaxed support measure corresponding to the p-norm with 0 < p < 1.
Another method for solving sparse problems is the Iterative Shrinkage Thresholding Algorithm
(ISTA) [48]. This algorithm iterates between two operations: linear estimation, and shrinkage
based on a soft thresholding function.

3.3 Echo Detection using Deep Networks

A network is trained for echo detection using a dataset {(yi,xi)}N
i=1 of signal examples yi ∈ RTs

along with their respective ground truth delta-train reconstructions xi ∈ RTs . The network is
a parametric inverse model hW (y) : RTs → RTs , accepting a signal example y as input and
parametrized by a set of weight parameters W . Training consists in minimizing a loss function over
the choice of W

W ∗ = argmin
W

N∑
i=1

L(hW (yi),xi) + J(W ). (3.4)

Here L is a loss function between the ground truth and the model prediction, and J is a regulariza-
tion term posing limitations on the model parameters to reduce overfit. In the following sections
we describe the details of the dataset, the model hW (y), and the training process.

3.3.1 Data Simulation

The physical model used for generation of a single echo is described in 3.3.1.1, followed by
description of signals and outputs in 3.3.1.2.

3.3.1.1 Gaussian Echo Model

Various parametric models have been proposed to model the echo pattern d(θm, t) described
in Eq. (3.3) [43, 40, 62, 63]. We use a model describing the ultrasonic echo with parameters
θm = [ω, ϕ, σ], associated with physical parameters of the pulse as follows
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d(θ, t − τ) = Kθg(t − τ, σ)cos[ω(t − τ) + ϕ], (3.5)

which is the product of a Gaussian envelop function with a harmonic function. g(t − τ, σ) is a
Gaussian envelop, with σ defining the scale (proportional to the pulse-width) of the echo around
its arrival time τ . cos[ω(t − τ) + ϕ] defines an harmonic function with ϕ and ω its phase and
center-frequency. The constant Kθ ensures that ||d(θ, t − τ)||2 = 1.

3.3.1.2 Dataset Randomization

Signal examples y are created as superpositions (Eq. 3.3) of Gaussian echoes (Eq. 3.5). For each
generated signal y, a target sparse train of delta functions x(t) =

∑M
m=1 xmδ(t − τm) is generated as

the reconstruction target. Examples of the simulated signals used for network training and testing
are demonstrated in Figure 3.2.

Echo pattern randomization. Echo pattern parameters described in Eq. 3.5, θ = [ω, ϕ, σ], are
drawn from uniform distributions. The phase ϕ is drawn in [0, 2π]. The center frequency ω and
the signal width σ are drawn in [ω0, ωr],[σ0, σr] respectively, where ω0, σ0 are the center frequency
and pulse width measured from a transducer reference echo-signal received from a flat reflector
immersed in water. The parameters ωr, σr control the width of the echo distributions. Specific
values and distributions are described in the Section 3.4.

Full signal randomization. The number of echoes in a signal is drawn from a uniform distribution
in the range [1, K]. In order to create significant overlap between echoes in the dataset, the TOFD
between neighbouring echoes is drawn from an exponential distribution. The first echo TOF is
randomly drawn uniformly from the Ts time-samples, and the following echoes’ TOFD is drawn
from exp(λ). λ hence defines the task overlap difficulty, and can be adapted to the task needs. In
our experiments, we set λ = 1

3σ0
, and allow TOFD range of [1.5σ0, 6σ0], with σ0 = 9 time-samples.

The echo amplitude x is drawn uniformly in [α, 1], with α a difficulty parameter controlling the
echo’s dynamic range. Noise is modeled in the signal by additive Gaussian noise. The level of
noise is defined by SNR = 10log10( Ps

Pn
), with Ps the power of the signal (normalized to 1 in all

experiments) and Pn is the power of the noise. The desired noise level is set by tuning Pn.

3.3.2 Network Design

The network hW (y) : RTs → RTs is a Fully Convolutional Neural Network (FCN) [64]. It receives
as input the signal y(t) of Ts time stamps, and outputs a prediction x(t) of the same length. The
proposed network, illustrated in Fig. 3.3, consists of two main parts: an inverse operator and a
projection operator. The inverse operator is a single wide convolution layer, preforming correlations
with multiple learned pulses of the signal with multiple pulse shapes. The projection is performed
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Figure. 3.2: Simulated data illustration. Examples of Simulated signals (top) used for network training and testing,
along with their envelopes and TOFs (bottom).

by several convolutional layers with small-sized filters, projecting the noisy result to the space of
clean, sparse and separated deltas.

Inverse operator. Since the signal generation presented in Eq. (3.3) defines a superposition of echos
with variance in their shape, its inverse function can be modeled by a standard convolution layer
with multiple filters whose size is large enough to cover the echo’s length. The wide convolution
layer is employed with a filter size of 6σ0, the approximated length of the generating pulses, and
depth f , the number of representative filters, set in the following experiments to 30. The input is
padded with 3σ0 for the output to obtain the length of the input signal Ts. The wide convolution is
followed by a ReLU [65] activation.

To observe the effect of first layer filters, the network was trained separately with different number
of filters and representative filters were inspected. In Figure 3.4, representative first layer filters
are presented. In Figure 3.4 (left), a filter from a network trained with a single filter is shown.
With one filter, the network functions as an adaptive non-linear filter (with ReLU layers providing
non-linearity). The filter learns a sinusoidal shape with a minor peak at its center, which is suitable
to locate an echo. However, this alone is not sufficient to resolve overlapping echoes of different
patterns, and indeed a network with a single filter produces poor overlap separation results (over a
55% decrease in echo detection accuracy compared to network results described in Section 3.5.1). In
Figure 3.4 (right), filters with the largest norms from a network with 30 filters in the first layer filters
are presented. One can observe that the learned filters reflect the temporal oscillatory nature of the
received signals related to the signal bandwidth and central frequency. Multiple filters adaptively
and simultaneously learn to identify different time-variant oscillatory shapes, information that is
later integrated by the network for the overlap separation prediction.

Projection operator. After deconvolution, multiple maps may exhibit strong response to the same
echo reflection, as a single echo is detected by multiple filters. However, in the desired output
only a single exact TOF of a reflection is represented by a non zero value. To enable reasoning,
competition among neighbouring components and removal of redundant noise, the inverse operator
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Figure. 3.3: Schematic overview of the suggested US-CNN architucture.

is followed by a series of 3 conv layers. These layers use a kernel of size 5, stride 1 and dilation [50,
55] of 2, and each is followed by a ReLU activation. The last convolution layer is followed by a
dropout layer [66], employed to improve network robustness to overfitting, with the dropout rate
set to 0.2. Finally, the activations are transferred into 1 × 1 convolution to reduce the multiple maps
representing each time-sample into a single output.

3.3.3 Network Training

We pose echo detection as a dense regression task – for each time sample, the model predicts
the amplitude of the echo reflection at that point, if there was any. Given N training signals
{y1, . . . , yN }, the network is trained using a dense l2 loss

LMSE =
N∑

i=1

Ts∑
t=1

(hW (yi(t)) − x̂i(t))2. (3.6)

where x̂i are soft versions of xi described below.

Gaussians for prediction relaxation. The ground truth x(t) is a sparse vector, with few non
zero values representing the echoes’ TOFs. Estimation of such non-continuous target vectors is a
difficult task to learn. Deviation of only one time-sample in prediction cause an error much bigger
than if the prediction was zero, even though the prediction is almost precise. This discourages
learning of useful, non trivially-zero predictions. To enable a smoother energy landscape for the
learning problem, we propose to smooth x(t) by convolving it with a zero mean Gaussian kernel
x̂(t) = g(0, ασ) ∗ x(t), where g(0, ασ) is a Gaussian filter of variance ασ. σ represents the assumed
signal echo-width, and α is a task dependant hyper-parameter defining the width of the smoothed
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Figure. 3.4: Representative filters learned by the first layer of the network. Left: Filter of a network trained with
one filter in the first layer. Right: 3 Representative filters of a network trained with 30 filters in the first
layer.

ground truth, set in our experiments to 0.2. This idea is similar to the generation of "heatmaps"
as regression targets in computer vision tasks [67, 68]. Exact echo locations can still be extracted
from the network prediction by locating the highest prediction peaks.

3.4 Experimental Setup

Experiments were carried on simulated data and two real phantoms. Detection accuracy was first
measured on simulated data, where data can be generated flexibly with exact ground truth. The
method was then applied to the layer thickness estimation task in two real-world ultrasonic scans
of physical phantoms, specifically designed for tests of this nature.

Data Simulation. The training set consisted of 10, 000 simulated signal, divided 80%-20% between
the train and validation sets. Each signal contains 500 time-samples. Three types of training sets
were generated. The first set is drawn without parameter randomization of σ, ω according to the
randomization procedure proposed in Section 3.3.1.2. The second set was drawn with narrow
distribution of σ, ω and the third with a wide distribution. The pulse width was randomized from
σ0 to 1.2σ0 for the narrow distribution and 1.4σ0 for the wide distribution. The center frequency
was randomized according to the -3dB bandwidth of the transducer for the narrow distribution and
-6dB bandwidth for the wide distribution. Table 3.1 shows the parameters of the three scenarios. In
all experiments, the maximal number of echoes K was set to 8 and the minimal echo amplitude
parameter α was 0.1.

Network Training. Training was done with the ADAM gradient-based optimization method [69] for
80 epochs with a learning rate of 0.01 and batch size of 150. Learning rate was reduced by a factor
of 2 if the validation error did not improve for 12 epochs and training proceeded until validation
error did not improve for 20 epochs. The network was implemented in Pytorch [70], and trained
for about 2 minutes on an NVidia GeForce TitanX GPU.
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Table. 3.1: Echo pattern parameter distributions in the simulated datasets.

Parameter\Distribution None Narrow Wide
Echo width σ (time-samples) σ0 = 9 [9, 10.8] [9, 13]
Center frequency ω (MHz) ω0 = 5.4 [4, 5.4] [3, 5.4]

Competition. In all experiments, the network is compared to standard SSR methods used for
solving the echo detection task – OMP [46], SMP [47] and ISTA [48]. To handle variations in
the pulse phase, dictionary atoms were constructed based on a complex variant of Eq. 3.5 [47].
Dictionary parameters were determined differently for each of the 3 data distributions described in
Table 3.1. The number of pulse width and center frequency values represented in the dictionary
were set to 1, 3, and 6 for the no randomization, randomization with narrow distribution, and
randomization with wide distribution respectively, as more values are required to cover the wider
echo distributions. For all distributions, the number of TOF values represented in the dictionary are
equal to the number of sampling times Ts = 500. The dictionary included the Cartesian product of
pulse width, center frequency and TOF values, so it contains 500, 4500 and 18000 values for None,
Narrow and Wide distributions.

Stopping conditions were optimized separately for simulation and real phantom experiments, to
provide each method with the best obtainable results. In simulation, where there are up to 8 echoes
in a signal, OMP and SMP ran until the residue energy is below 3% of the measured signal energy
with a hard limit of 15 iterations. On the real phantoms, OMP and SMP methods ran until the
residue energy is below 25% of original energy with a maximum of 4 iterations. This early stopping
criterion is used in order to reconstruct only significant echoes. ISTA runs for 3 iterations with a
threshold coefficient of 0.1.

Post Processing. Simple post-processing is introduced to reduce noise and promote sparsity in
predictions. First, activations with values lower than a pre-defined value β are set to zero. For the
physical phantoms, we set the threshold β rather high in order to catch the first two echoes. If there
are less than two values above β, it is iteratively reduced by assigning β = c · β with c ∈ [0, 1], until
two echoes are detected. In simulation, β is set to 0.01, while with the real phantoms it is set to
0.2 and c = 0.8. After the thresholding operation, non-maximum suppression (NMS) is applied to
remove small detection activations which are near larger activations. The NMS range used is 14
time samples from the selected detection, which is approximately equal to 1.5σ0.

3.5 Results
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Figure. 3.5: Simulation results. Comparison of detection accuracy as measured by AUC (top) and F1 (bottom) among
the four methods tested. Detection accuracy is plotted as a function of echo overlap parameter λ (right),
required accuracy threshold ϵ (middle) and SNR (left).

3.5.1 Simulation Results

Evaluation metric. To evaluate accuracy in simulation, each detection (an output activation larger
than zero) is compared with all ground truth delta-functions of the signal, to see if a hit can be found.
Denote a detection hypothesis and a ground truth delta by z(t) = azδ(t − tz) and x(t) = axδ(t − tx)
respectively, where az, ax are the amplitudes and tz, tx are the delta function timings. A detection is
declared a ’hit’ if ∑T

t=1(s(z(t)) − s(z(t)))2∑T
t=1(s(x(t)))2

< ϵ, (3.7)

where s(·) returns the Gaussian envelope component of the simulated signal, as described by Eq.
(3.5). Based on this hit definition, a recall-precision curve over the test set is plotted and the area
under the curve (AUC) and maximal F1 score (across all threshold values) are reported as the
accuracy indices. Note that a detection is classified as a hit only if it matches a true echo in both
location and amplitude. For small values of ϵ, this can be rather challenging.

Results. We report accuracy on the narrowly distributed (scenario 2 in Table 3.1) test set as a
function of three main difficulty parameters: λ (Fig. 3.5 (left)) controlling echo overlap, required
detection accuracy ϵ (Fig. 3.5 (middle)), and SNR (Fig. 3.5 (right)), defined in Section 3.3.1.2. The
default values of λ, ϵ and SNR in these experiments are set to 3, 0.1, and 20 respectively, and in each
experiment a single parameter changes while the other two are kept fixed. For each algorithmic
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Figure. 3.6: Demonstration of real phantoms used for thickness estimation experimentation. Top: Side view
illustrations of the phantoms: (a) Round Ultem phantom, and (b) Aluminum phantom. Bottom: Time-
domain signals from different layers of the (a) Ultem and (b) Aluminum phantoms.

method, variants corresponding to the 3 distributions (see Table 3.1) were tested and results are
shown for the best option (narrow distribution for US-CNN, non-randomized dictionaries for the
other methods).

As can be seen in Fig. 3.5, the network provides higher accuracy then competing algorithms in
most of the scenarios. The left graph shows that the network has a considerable advantage over
competition for scenarios with significant echo overlap (λ values of 1 and 2). For high overlap of
λ = 1 it provides almost twice the accuracy than alternative algorithms. The middle graph shows
that the network has a significant advantage when high detection accuracy is required according to
Eq. (3.7) (small ϵ values). SMP, a greedy search algorithm tailored specifically for the task of echo
separation, provides similar results to the network’s in easier cases. When accuracy as a function of
SNR is considered (Fig. 3.5 (right)), the network and SMP are the leading algorithms.

3.5.2 Real Phantom Results

We assess the network on scans taken from two physical phantoms in the task of layer thickness
estimation. The first phantom is composed of two disks made from Ultem (a type of machinable
polymer) attached by an adhesive layer (see Fig. 3.6(a)). The top Ultem disk is flat and the other
has inner circular steps of 0.1mm in height. The two disks are attached with adhesive, forming an
adhesive layer of thickness ranging from 0.1mm to 0.5mm at intervals of 0.1 mm, according to the
steps in the lower Ultem disk. The second phantom is a thin 8-step Aluminum calibration block,
with thickness ranging from 0.03 inch to 0.1 inch at intervals of 0.01 inch (see Fig. 3.6(b)). Both
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Figure. 3.7: Thickness estimation results. Mean Absolute Error (MAE, in mm) of the tested methods on the (a) Ultem
and (b) Aluminum phantoms. In each figure, the left histogram shows average error on the thinnest layer,
the right histogram shows the average error of the remaining layers.

phantoms were scanned by a scanning acoustic microscope equipped with a 5MHz, flat, 0.5 inch
diameter transducer.

The two phantoms differ in material and structure, posing a different echo separation challenge.
First, the change in material and experimentation time leads to differences in the reflected echoes
in terms of the echo patterns. Additionally, the aluminum block introduces reverberating multi
reflections that result in additional overlaps after the second echo.

Thickness estimation results. Layer thickness estimations were obtained by extracting the TOFD
between the two largest echoes and converting it from time (time-samples in microseconds) to
distance (mm) based on the given material sound-velocity of the two materials. The inspected
phantoms were premeditatedly designed and manufactured with a high level of precision for
experimentation. Therefore, the exact distance in each thickness is reliably known. Fig. 3.7 shows
the mean absolute error (MAE) obtained by all methods for the thinnest layer, and for the average
of the remaining layers in the two phantoms. The thinnest layer provides information regarding
the range resolution of each method, whereas the average of the remaining layers measures the
overall detection accuracy and consistency. For each algorithmic method, variants corresponding to
the 3 distributions (see Table 3.1) were tested and results are shown for the best option (narrow
distribution for US-CNN, non-randomized dictionaries for OMP and SMP, and wide distribution for
ISTA).

For the thinnest layers in each model, where the neighboring echoes severely overlap, US-CNN
provides the best accuracy on both models, and with a significant margin. For the Ultem phantom,
the network also shows the lowest error rate overall across the different layers, whereas for the
Aluminum phantom ISTA provides the lower error rates. However, for the Aluminum phantom
all methods successfully separated the overlapping echoes across all layers but the thinnest. This
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Figure. 3.8: Thickness estimation visualization for layer physical phantoms. Each pixel within the Time-of-Flight-
Difference (TOFD) predictions (Gray scale images) indicates the estimated thickness for the spatial location.
The color images are the corresponding TOFD error between the prediction and the ground truth. Top:
Ultem phantom. Bottom: Aluminum phantom.
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Figure. 3.9: A-scan prediction visualization. Left: A-scan with US-CNN echo detection from the 0.5mm ring of the
round Ultem phantom. Right: A-scan from the 0.1mm ring of the round Ultem along with detections of
US-CNN, SMP and ISTA.

can be seen by the low MAE values ,ranging from 0.015mm to 0.034mm, comparing to the block
thicknesses, ranging from 1mm to 2.54mm, representing a maximal deviation of 3% from the
correct value.

Thickness estimation visualization. Figure 3.8 shows the detection results of the tested algorithms
as two dimensional thickness maps. While all the methods perform reasonably well qualitatively for
thick layers, the network provides a more accurate and stable prediction. For the thinnest layers,
the network shows significant improvement over competing algorithms, as can be clearly seen by
the TOFD error figures. US-CNN successfully separates overlapping echoes in the thinnest layer of
both phantoms, enabling a new range resolution for layer thickness estimation. The fine differences
between the methods for thin layers can be better seen in a closer inspection of the A-scans. In
Fig. 3.9, A-scans and predictions of the tested algorithms on the round model are shown. On the
left an a-scan from the 0.5mm ring of the phantom is shown, along with US-CNN prediction and
the signal envelope. As can be seen, the prediction is located at the center of the signal envelope.
On the right, prediction of an a-scan from the 0.1mm ring is shown for US-CNN, SMP, and ISTA. As
can be seen, SMP and the ISTA methods misplace a single large echo in the center the overlapping
echoes’ combination. This main central middle detection is followed by additional one or more
detections corresponding to small residual tails. These methods hence fail to detect the accurate
interface positions.

Amenability to signal variation. In Figure 3.10, layer thickness MAE of the tested method is shown
as a function of training distribution width. Results are shown separately for overall estimation
(where the mean is over all estimations in all layer thicknesses) and for the thinnest layer in
each model. For SSR methods, usually wider dictionaries used in wider distributions effectively
causes a deterioration in thickness estimation. The network exhibits another behavior. For overall
performance, the network seems to monotonically gain from training on a wider distribution.
For the thinnest layers with the highest overlap, the widest distribution causes damage, but a
distribution with moderate variance provides the best accuracy. These results suggest that the
network is a more plausible alternative when large echo variance is present.
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Figure. 3.10: Error as a function of training distribution width. Mean absolute errors of the four tested methods as
a function of training distribution width. (a)-(b) Round phantom. MAE of (a) thinnest layer and (b)
average of the rest of the layers. (c)-(d) Rectangular phantom. MAE of (c) thinnest layer and (d) average
of the rest of the layers. Very large errors (full height bars) are measured when a method fails to find a
second echo relevant for width estimation.

Inference efficiency. Network inference for a single simulated signal, containing 500 time samples,
takes 0.5 millisecond on GPU and 1.5 milliseconds on CPU. Processing the signal in an unoptimized
manner with ISTA, OMP, and SMP, used with the minimal number of dictionary atoms, takes 5, 10
and 20 milliseconds respectively on CPU. That is, US-CNN is 3.5-40 times faster than traditional
algorithms.

3.6 Conclusions

In this paper a lean and efficient neural network is presented for the task of overlapping echo
detection. sparse approximation techniques in the task of overlapping echo detection. Using
simulated data, the network was shown to provide better accuracy than competition in high
overlap conditions and when high detection accuracy is required. Tested on two physical phantoms,
the network provided with accurate and stable estimation in a layer thickness estimation task.
Experiments with increased echo variance in the training phase showed that compared to dictionary-
based models, the network provides a more robust alternative for coping with high echo variance.
In further work, the network model can be adapted to additional signal physical characteristics,
such as chirps and multi-reflections, simply by adding those to the training data.

Acknowledgements: This work is supported by the Pazy foundation Israel, through grant no.
ID63-2018.
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Abstract:

High-content image-based phenotypic profiling combines automated microscopy and analysis to
identify phenotypic alterations in cell morphology and provide insight into the cell’s physiological
state. Classical representations of the phenotypic profile can not capture the full underlying com-
plexity in cell organization, while recent weakly machine-learning based representation-learning
methods are hard to biologically interpret. We used the abundance of control wells to learn the
in-distribution of control experiments and use it to formulate a self-supervised reconstruction
anomaly-based representation that encodes the intricate morphological inter-feature dependencies
among classical representations while preserving the representation interpretability. The perfor-
mance of our anomaly-based representations was evaluated for downstream tasks with respect to
two classical representations across four public Cell Painting datasets. Anomaly-based represen-
tations improved reproducibility, Mechanism of Action classification, and complemented classical
representations. Unsupervised explainability of autoencoder-based anomalies identified specific
inter-feature dependencies causing anomalies. The general concept of anomaly-based representa-
tions can be adapted to other applications in cell biology. This work is in the final stages of writing
a manuscript that will be posted as a preprint on bioRxiv, and will be submitted to a top scientific
journal in the field of computational biology.

4.1 Introduction

Visual cell phenotypes, characterized by the morphological features of a cell such as a cell shape
and molecular composition, can serve as powerful readouts for cell state [71, 72, 73, 74, 75].
Alterations in visual cell phenotype, such as changes in cell shape and intracellular organization,
can provide insight into the cell’s physiological state, as well as assist in the diagnosis and treatment
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of diseases [75, 76, 77, 78]. High-content image-based phenotypic profiling combines automated
microscopy and automated image analysis to identify phenotypic alterations in cell morphology
[79, 80, 81, 82, 83, 84]. For example, the Cell Painting assay uses high-content imaging, followed
by analysis of multiple organelle stains in multiple cellular compartments at single cell resolution
[85]. The most common approach for analysis of phenotypic profiling data, relies on pre-defined
(a.k.a, “engineered”) single cell features, extracted with software tools such as Cell Profiler [86],
and followed by aggregation of these single cell features across the cell population to represent
a “phenotypic profile”. The deviation of the treatment-induced phenotypic profile is measured in
relation to the profile of untreated/control cells. The phenotypic alteration defines the degree and
direction of change in the cellular high-dimensional phenotypic space, and can be used for various
applications such as discovering drugs that “shift” a “disease-associated” to a “healthy-associated”
phenotype or finding chemical compounds with a phenotype associated with a desired mechanism
of action (MoA) [87, 88, 83, 89].

The gold standard for measuring a phenotype relies on the (inaccurate) implicit assumption
of independence between the features extracted from the imaged cells. One example for this
approach is measuring the fraction of features that dramatically deviate from the control profile in
response to a treatment [83, 90]. Another example is measuring the correlations between profiles
of treatments’ replicates [83, 91, 92]. Of course, the profile features are interdependent, even
after feature selection, because cell organization is so complex. For example, variation in cells’
intracellular organization may be largely explained by the cells’ shape [93]. Explicitly measuring
these complex dependencies for all features is not feasible due to the curse of dimensionality
[94]. Thus, the biological function investigated may be incorrectly interpreted due to a simplified
representation of the underlying data complexity. Recent representation-learning methods train
machine learning models to encode lower-dimensional cell-level or well-level embeddings (called
“latent representations”) through weakly supervised learning [95, 96, 97, 98, 99, 100] or self
supervised learning [101]. While representation-learning methods show promising results in terms
of capturing the differences between treatments, current representation methods are not optimized
to model the change posed by the treatment in respect to the control, but to distinguish between
the different treatments (see Discussion). Moreover, representation-learning methods are harder
to interpret, because the features forming the latent representations do not have a semantic cell
biological explanation. Here, we propose using methods for anomaly detection to enhance the
phenotypic profile representation in the context of high-content image-based phenotypic profiling by
encoding intricate inter-feature dependencies while preserving the representation interpretability.

Anomaly detection aims at detecting abnormal observations that deviate from a predefined baseline
pattern [102] and has vast applications in bioinformatics [103, 104], healthcare [105], and cyber-
security [106]. Anomaly detection relies on statistically characterizing the in-distribution of the
data and defining observations that do not conform to this distribution as anomalous. Different
approaches, such as neighbor-based [107, 108] and isolation-based [109] were applied for anomaly
detection, with ML emerging as an especially powerful technique in recent years [110]. The
advantage of ML methods, and particularly deep neural networks, stems from their ability to
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integrate massive amounts of complex data into a generalized model that captures the inherent
dependencies of the data distribution [111, 112]. High-content image-based phenotypic profiling
naturally aligns with the formulation of an anomaly detection problem with many replicates of the
control condition that can be used to statistically define the in-distribution baseline patterns, and a
few replicates from each of the (many) treatments, that can be assessed according to their deviation
from the baseline, or in other words how anomalous they are in respect to the in-distribution
baseline patterns.

We present here a reconstruction-based, self-supervised, anomaly detection-based representation
for high-content image-based phenotypic cell profiling using the “gold-standard” CellProfiler repre-
sentation. Reconstruction-based methods for anomaly detection are trained to reconstruct “normal”
(i.e., non-anomalous) samples from low-dimensional encodings under the intuition that anomalous
samples will be less successfully reconstructed due to altered dependencies between the representa-
tion’s features. We demonstrated that our anomaly-based representations surpass the CellProfiler
representations on multiple high-content Cell Painting datasets across different cell types and treat-
ments [88], in terms of reproducibility and the downstream task of MoA identification. Moreover,
we found that anomaly-based representations encapsulate complementary information in respect to
the CellProfiler representations, leading to improved reproducibility and MoA identification. Finally,
we demonstrated that applying an unsupervised method to explain autoencoder-based anomalies
pinpointed specific inter-feature dependencies that changed to define an anomaly.

4.2 Results

4.2.1 Anomaly Detection Representation for Image-based Phenotypic
Cell Profiling

Our anomaly detection-based method consists of three steps (Fig. 4.1). First, pre-processing, single
cell feature extraction using CellProfiler[86] and well-level averaging across the cell population
defining the well’s phenotypic profile (4.1A). Second, leveraging the abundance of control wells, to
train an “in-distribution” autoencoder deep neural network that encodes a lower dimensionality
compressed phenotypic profile and decodes it to reconstruct the input profile in the original
dimensionality, according to the (in-distribution) baseline of the control wells’ profiles (Fig. 4.1B).
Half of the control wells from each experimental plate were pooled for training, and used to
standardize all wells from their respective plate. Following feature selection performed on all
profiles, the train controls are used for training the “in-distribution” autoencoder to minimize the
discrepancy between the input and the reconstructed profiles. The trained autoencoder learns
non-linear interrelationships between the features in the control profiles. Having access to all plates
and well locations, the in-distribution autoencoder was inherently guided to encode batch effects
related to plate association, without the risk of exposing itself to data leakage, because the treated
wells were not used for training. Third, the reconstruction errors of the in-distribution autoencoder
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Figure. 4.1: Method: anomaly-based representations for cell profiling. (A) Top: Well-aggregated profiles. Left-
to-right: The CellProfiler software was used to extract single cell morphology features from Cell Painting
images, the single cell features were aggregated to a well-level profile. Bottom: Each plate (gray) includes
control (cyan) and treated (color) wells (cell icon). Half of the control wells were used to train the
in-distribution autoencoder (B) and the other wells were used for evaluation (C). (B) The in-distribution
autoencoder was trained to minimize the reconstruction error of control wells. (C) The in-distribution
autoencoder was used to reconstruct control and treated wells. The reconstruction errors were calculated for
each well. (D) The reconstruction error of a treated well was standardized according to the reconstruction
errors of the control wells that were not used for training. These standardized reconstruction errors
formed the “anomaly”-based representation. Treatments that lead to high reconstruction errors (green), in
respect to the controls’ reconstruction errors (blue), were defined as “hits” (threshold in dashed red). (E)
Anomaly-based representation can be used for a variety of downstream applications.
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Table. 4.1: Datasets used in this study. CDRP-bio (cpg0012-wawer-bioactivecompoundprofiling) [80], LINCS (cpg0004-
lincs) [83], LUAD (cpg0031-caicedo-cmvip) [91], TAORF (cpg0017-rohban-pathways) [113]. Treatment:
Chemical compounds, or ORF overexpression. Controls: number of control wells. Treatments: number of
distinct treatments. Nr: median number of replicates per treatment.

Dataset Treatment type Cell line Controls Treatments Nr

CDRP-bio Chemical U2OS 3,528 2,239 8

LINCS Chemical A549 26,572 1,458 5

LUAD Genetic A549 320 593 8

TAORF Genetic U2OS 120 323 5

are measured as the difference between the CellProfiler representations to the autoencoder output
predictions, and define the anomaly-representations of treated wells (Fig. 4.1C). We estimated
the in-distribution reconstructed error according to the control wells that were not included
for training. The anomaly-representation of a treatment was defined as the deviation of the
treated well’s reconstruction error, one feature at a time, in respect to the in-distribution controls’
reconstruction errors (Fig. 4.1D). High reconstruction errors indicate that the in-distribution
autoencoder was not able to effectively reconstruct the wells’ profiles, suggesting that these
treatments alter the morphological and intracellular organization in relation to control cells. These
anomaly-representations can be used for downstream analyses such as hit identification in screening,
assessment of treatment reproducibility and MoA identification [83, 88] (Fig. 4.1E). Importantly,
the reconstruction error of each biologically-interpretable feature provides a direct “mechanistic”
explanation, thus benefiting from transparent interpretability of hand-crafted features along with
deep-learning capitalization of non-linearity and the wealth of control data.

4.2.2 Anomaly-based Representations Enhance Reproducibility

Reproducibility, the extent to which a phenotype is replicated under the same experimental treat-
ment, is a critical requirement in any screening application, where only a small fraction of treatments
are followed-up with further comprehensive experimental validations (e.g., in drug discovery [114]).
In high-content cell profiling, reproducibility serves as a measurement for the consistency of the
experimental protocol and the efficacy of the profile’s representation and is used to exclude low-
reproducible compounds from downstream analyses. We evaluated the reproducibility of our
anomaly-representation in comparison to the CellProfiler representations in replicates of the same
treatment across different plates. Reproducibility was measured by standardization of the well’s
replicate-level profiles per plate, followed by measurement of the “Percent Replicating” score [83,
88, 91], the fraction of reproducible treatments, where a compound is deemed reproducible if its
median pairwise profile correlation across replicates (“Replicate Correlation”), exceeds a threshold
percentile of the pairwise correlation of random pairs of replicates across treatments (“Random
Pairs Correlation”) (Fig. 4.2A-B). Following [88], we considered this threshold to be the 90th

percentile of the random pairs’ distribution. We measured reproducibility of the anomaly- and
of the CellProfiler-representations on four publicly available Cell Painting datasets from the Cell
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Figure. 4.2: Anomaly-based representations are more reproducible. (A) Cartoon depicting the reproducibility
determination. A treatment is defined as reproducible if the median pairwise correlation of its replicates
(Replicate Correlation) is higher than the 90th percentile of the pairwise correlation. (B) Cartoon depicting
the Percent Replicating score. The distribution of Replicate Correlations (green) versus the distribution
of Random Pairs Correlations (black). The dashed red vertical line defines the reproducibility threshold
of 90% of the random pairs distribution - a well to the right of this line (green cell icon) is defined as
reproducible, and the fraction of reproducible treatments determines the Percent Replicating score. (C)
Percent Replicating scores across datasets for the anomaly-based (left) and the CellProfiler representations
(right). Distribution of Replicate Correlations (green - anomaly-based, red - CellProfiler-based). Distribution
of Random Pairs Correlations (gray), zero correlation (dashed gray vertical line), reproducibility threshold
(dashed red vertical line). (D) Venn diagram showing the number of reproducible treatments exclusive to the
anomaly-based (green) or CellProfiler-based (orange) representations, and common to both representations
(yellow).
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Table. 4.2: Reproducibility results. Percent Replicating score for the CellProfiler (left column) versus the anomaly-based
(middle column) representations. The union of treatments found reproducible by either representation is
shown in the right column (A ∪ C).

Dataset CellProfiler (%) Anomaly (%) A ∪ C (%)

CDRP-bio 201 (8.9) 418 (18.66) 429 (19.16)

LINCS 1118 (76.68) 1259 (86.35) 1329 (91.15)

LUAD 68 (62.05) 438 (73.86) 455 (76.72)

TAORF 189 (58.51) 180 (55.72) 221 (68.42)

Painting Gallery [115] (Table 4.1): two compound screens (CDRP-bio [80], LINCS [83]) and two
open reading frames (ORF) overexpression screens (LUAD [91], TAORF [113]); TAORF contains
overexpression of WT cDNAs while LUAD contains overexpression of both WT and genetic variants.
The median number of replicates per treatment (Nr) in each dataset ranges between 5 to 8.

The anomaly-based representations were more reproducible than the CellProfiler representations in
three out of the four datasets (Fig. 4.2C and Table 4.2): percent replicating score of 18.6% versus
8.9% correspondingly (i.e., a 2.09 fold increase) in the CDRP-bio dataset, 86.3% versus 76.7% (i.e.,
a 1.12 fold increase) in the LINCS dataset, and 73.8% versus 62.05% (i.e., a 1.19 fold increase) in
the LUAD dataset. For TAORF, the smallest of the inspected datasets, CellProfiler representations
reproduced 58.51% of the ORF overexpression versus 55.72% reproduced by the anomaly-based
representation (i.e., a 1.05 fold increase in favor of CellProfiler). The deterioration in reproducibility
could be related to the limited number of control wells in the TAORF dataset, with only 60 (out of
120) control wells used for training the in-distribution autoencoder. For comparison, the CDRP-bio
dataset has 3,528 control wells (Table 4.1). Systematic assessment of the percent replicating
score as a function of the number of control wells verified that increased numbers of control wells
enhance the anomaly-based representations reproducibility, probably by learning a more accurate
representation of control well’s in-distribution (Supplementary Fig. 4.1). Low performance was
observed for TAORF and CDRP-bio datasets on previous research and was hypothesized to derive
from poorer technical data quality [88]. Together with the low number of training samples, that
may lead to inaccurate in-distribution learning. The distributions of Replicate Correlations were
lower for the anomaly-based representation, regardless of being more reproducible in comparison
to CellProfiler representations, because their corresponding Random Pairs Correlations were more
concentrated around 0 (Fig. 4.2C). These low correlations among random replicates suggested that
the anomaly-based representations were less sensitive to experimental batch effects that may lead to
spurious correlations. We next evaluated what fraction of the reproducible treatments were common
and what fraction was distinct for the anomaly-based and CellProfiler representations (Fig. 4.2D).
Most of the reproducible treatments were consistently identified in both representations, with larger
numbers of reproducible treatments exclusively found by the anomaly-based representation for all
datasets excluding TAORF. The union of the reproducible treatments found by either representation
leads to a major improvement in the numbers of reproducible treatments that can be used for
downstream analyses such as identifying their Mechanism of Action: 80% more in CDRP-bio,
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25% in LINCS, 24% in LUAD, and 42% in TAORF. Finally, we evaluated whether the anomaly-
based representations also provided complementary information to the mRNA expression of 978
genes (called the L1000 profile). Analysis of the complementary of all three representations
showed that the anomaly-based representations are complementary to both CellProfiler and L1000
(Supplementary Fig. 4.2). Altogether, these results indicate that anomaly-based representations
encapsulate complementary information with respect to the CellProfiler representations that can
lead to the availability of more reproducible treatments for followup investigations.

4.2.3 Anomaly-based Representations Enhance Mechanism of Action
Identification

Linking a compound to its mechanism of action (MoA) is an important application of image-
based phenotypic profiling [87, 83, 88, 89, 116]. We evaluated the ability to identify the MoA of
compounds using anomaly-based representations in comparison to the CellProfiler representations.
CDRP-bio and LINCS include compounds with known MoA and were thus used for this evaluation.
We followed a previously described workflow to benchmark MoA identification on these datasets [83,
88] (Fig. 4.3A). First, we included compounds that were found reproducible by one of the anomaly-
based, CellProfiler, or L1000 representations. Second, we excluded MoAs with fewer than 5
reproducible compounds linked to them. The complementarity between anomaly-based, CellProfiler
and L1000 representations leads to inclusion of more compounds that leads to inclusion of more
MoAs with sufficient numbers of treatments. Third, we evaluated compounds’ MoAs predictions for
different representations, with a 5-fold cross-validation using Logistic Regression (LR) and Multi
Layer Perceptron (MLP) classifiers. This process was repeated 10 times for robustness analysis. The
comparison between the anomaly-based and the CellProfiler-based representations was performed
using two inclusion criteria for selecting reproducible compounds to train MoA classifiers: according
to (1) CellProfiler and L1000 (C∪L), or according to (2) Anomaly, CellProfiler, and L1000 (A∪C∪L).
Inclusion of reproducible compounds determined by the anomaly-based representations (A ∪ C ∪ L)
increased the number of MoAs (46% more for CDRP-bio and 19% more for LINCS), and increased
the total number of reproducible compounds (48% for CDRP-bio and 21% for LINCS) (Fig. 4.3B).
For each of the two inclusion criteria subsets the anomaly-based representations exhibited superior
performance compared to the CellProfiler baseline for both the LR and the MLP classification
models, with an average weighted F1-score of 0.244 versus 0.216 for the best model trained with
anomaly-based versus CellProfiler representations correspondingly for the CDRP-bio dataset, and
0.22 versus 0.188 for the LINCS dataset (Fig. 4.3C). Specifically, the anomaly-based representations
lead to prominent improvements in the CDRP-bio mechanisms of actions retinoid receptor agonist
(∆F1-score = 0.35), p38 MAPK inhibitor (∆F1-score = 0.31) and CDK inhibitor (∆F1-score =
0.23), and in the LINCS MoAs for retinoid receptor agonist (∆F1-score = 0.33), vitamin D receptor
agonist (∆F1-score = 0.28), and in PI3K inhibitor (∆F1-score = 0.18) (Fig. 4.3D). Additionally,
anomaly-based representations were also found to be complementary to the genetic L1000 profiles,
showing improved results when concatenated together compared to using each one independently
(Supplementary Fig. 4.3)). Altogether, anomaly-based representations improve MoA classification
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Figure. 4.3: Anomaly-based representations improve MoA classification. (A) MoA classification workflow. Left-to-
right: inclusion of compounds that met our reproducibility criteria (for either the CellProfiler or the Anomaly-
based representations), followed by exclusion of MoAs with < 5 compounds attributed to them. Training
machine learning models using the anomaly-based versus the CellProfiler-based representations with cross-
validation. (B) MoA classification results for anomaly-based versus CellProfiler-based representations, using
the reproducible inclusion criteria with (A ∪ C ∪ L) or without (C ∪ L) the anomaly-based representations.
(C) F1-scores of anomaly-based (green) versus the CellProfiler-based (orange) representations trained on
MLP and LR models for CDRP-bio (cpg0012-wawer-bioactivecompoundprofiling) and LINCS (cpg0004-lincs)
datasets. Each dot represents an experiment and bars indicate confidence intervals. Red dashed line
indicates the F1 random score. * - statistically significant (p-value < 0.05) by Welsh t-test. P-values for
CDRP-bio were 0.042 (LR) and 0.003 (MLP) and for LINCS 1.5e-10 (LR) and 0.003 (MLP) (D) MoA-specific
F1 scores using the (better performing) LR model. Bold indicates MoAs that would not be included without
reproducible compounds according to the anomaly-based representations. F1-scores lower than the random
score for both representations (1/19 MoAs in CDRP-bio, and 9/55 MoAs in LINCS) were excluded from the
figure to improve clarity.
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by both increasing the number of reproducible compounds available for MoA classification and by
encoding more discriminative information than the CellProfiler-based representations.

4.3 Anomaly-based Representations are Interpretable

Understanding the underlying reasons behind a treatment’s hit identification is crucial for meaning-
ful interpretation and subsequent decision-making. The CellProfiler hand-crafted features are linked
to specific morphological phenotypes, and thus treatment-induced alterations of many of these
features can be biologically interpreted and investigated. Interpretation of the anomalous features
is more challenging because an anomalous (i.e., poorly reconstructed) feature can be “caused” by a
combination of subtle alterations in several inter-dependent input features (Fig. 4.4A). To interpret
our anomaly-based representation we applied a recent unsupervised extension of the widely used
SHAP (SHapley Additive exPlanations) [117] that was designed to explain anomalies identified
by an autoencoder [118]. SHAP assigns importance values to features based on their additive
contribution to the model output, and its extension to autoencoder-based anomalies isolates the
input features contributing to the high reconstruction errors by treating each feature as a separate
reconstruction task (Fig. 4.4A). We focused on the interpretation of the ATPase inhibitor MoA, which
was one of the top predicted MoA classes in the CDRP-bio dataset (Fig. 4.3D). When pooling all
ATPase inhibitor treatments we found that the CellProfiler feature “Cytoplasm_Granularity_AGP_4”
was ranked first in terms of its deviation from the control, and was ranked second in the anomaly-
based representation (Fig. 4.4B, single asterisk). Granularity measures the signal lost with iterative
erosions relative to the total signal and can be hard to directly interpret. The autoencoder-based
anomaly SHAP explanation for “Cytoplasm_Granularity_AGP_4” included the “adjacent” Granularity
feature, “Cytoplasm_Granularity_AGP_3”. This result aligned with a recent study [119] reporting
that genetically disrupting the Vacuolar ATPase (which is a specific ATPase) caused a specific de-
crease in the first Granularity feature in the Golgi and plasma membrane channel (the most similar
channel to the F-actin, Golgi, and plasma membrane (AGP) channel in the CDRP-bio dataset), and
a concomitant increase in other Granularity features. Our feature selection excluded some AGP
Granularity features thus not allowing us to fully replicate this result. To test this link between
granularity features, we retrained the in-distribution autoencoder using the full feature set, without
selection. This analysis verified that the granularity phenomenon is reproduced for the ATPase
inhibitor MoA in both the CellProfiler and the anomaly-based representations (Supplementary Fig.
4.4). Though none of the compounds in the ATPase inhibitor MoA class in CDRP-bio was annotated
to directly target the Vacuolar ATPase, the similarity of our observations can easily be explained by
either perturbation causing a general disruption of intracellular acidification and therefore similar
observable phenotypes.

A feature with a high reconstruction error but an unperturbed CellProfiler value implies that the
in-distribution autoencoder reconstruction was hampered by the combined effect of alteration in
other features. An example is “Cells_AreaShape_FormFactor” (Fig. 4.4B, double asterisk). The
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Figure. 4.4: MoA interpretation. (A) Illustration of the explanation process of the anomalous features (orange on
the right). This anomaly is explained by the combined alteration of multiple input features (yellow on
the left). A group of well-level profiles of interest are passed through the network, and the features
exhibiting the highest reconstruction errors are identified. For each investigated feature (orange square
in output), the weights leading to its activation (green lines) are activated and the weights going from its
CellProfiler representation in the input are deactivated (red lines). The well-level profiles are reintroduced
into the network and the features that led to high reconstruction errors are found by using the autoencoder-
based anomaly SHAP. These explanations can be pooled according to a treatment or MoA to provide
the corresponding explanation. (B) Distributions of ATPase inhibitor top five features’ z-scores for the
CellProfiler (orange) and anomaly-based representations (green) ranked according to the CellProfiler
median z-scores (top) and by anomaly median z-scores (bottom) in the CDRP-bio dataset. Features in bold
are analyzed using the autoencoder-based anomaly SHAP in the following panels. (C-E) Explanations for
selected (see text for justification) altered features in the ATPase inhibitor MoA in the CDRP-bio dataset.
Each dot represents a replicate well, and the x-axis represents the SHAP values contributing to the errors.
Negative values indicate an inverse relationship between the inspected feature and the input feature
compared to the relationship in the control population.
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FormFactor feature measures the roundness of objects by calculating the ratio between the object
area and perimeter, i.e., larger values indicate more circular objects. The autoencoder-based
anomaly SHAP explanation of this feature included two features that measure the cell’s distance
from neighboring cells (“Neighbors_FirstClosestDistance” features), with higher distances in the
input leading to lower cell roundness in the reconstruction (Fig. 4D). Typically, distance from
neighbors is a measure of local cell sparsity, and cells at sparse environments have more space to
spread and thus may have lower FormFactor values. It is intriguing that this relationship is affected
in this MoA and further exploration could be done to test how frequently this relationship is broken
across MoA classes and whether this is correlated with compound toxicity as AreaShape features
are known to play an important role in predicting Cell Health readouts [120].

A feature with a low reconstruction error but a perturbed CellProfiler value implies that the
inter-relations learned in the in-distribution autoencoder were maintained and thus the deviation
of the feature can be properly reconstructed by using alterations of other features. An exam-
ple is “Cells_Texture_DifferenceEntropy_RNA_10_0” (Fig. 4.4B, triple asterisk). This feature’s
autoencoder-based anomaly SHAP explanation identified positive relations with other texture
features and with the radial distribution mean fraction in the cytoplasm AGP channel (Fig. 4.4E).
Texture features are highly represented in Cell Painting datasets, but are not human-interpretable.
It is possible that exploring interpretable SHAP explanations rather than uninterpretable features
provides a welcome alternative approach to understanding the biology behind low interpretable
CellProfiler features.

Cumulatively, our results indicate that autoencoder-based anomaly SHAP explanation of anomaly-
based representations can reveal specific biological-interpretable dependencies between features
that break following a treatment.

4.4 Discussion

We take advantage of the abundance of control wells, to formulate the high-content image-based
cell profiling as an anomaly-detection problem. Our anomaly-based representations learn the
inter-feature complex dependencies of the population of “normal” (i.e., unperturbed) cells by
minimizing the control reconstruction errors under the premise that perturbations in the cells’
organization will lead to less successful reconstruction due to altered inter-feature dependencies.
Such representations hit a sweet-spot in terms of the inherent tradeoff between performance
and interpretability. First, our anomaly-based representations model the dependencies between
features, surpassing traditional methods of analyzing CellProfiler-representations where features
are considered independently in reproducibility (Fig. 4.2) and MoA classification (Fig. 4.3). The
low correlations among random replicates (Fig. 4.2C) suggests that these representations implicitly
mitigate batch effects, a known confounder of cell profiling, meriting the future application of
anomaly-based representations for batch correction [121]. Second, optimizing representations

4.4 Discussion 75



to capture these inter-feature dependencies provide a complementary readout that can identify
perturbations that extensively alter these dependencies, without necessarily sufficiently altering
each of the individual features (Figs. 4.2,4.3). For example, several positively correlated features
may lead to an anomaly due to a marginal increase of some features along with a marginal decrease
of other features. These subtle phenotypes are not sufficiently profound to create a reproducible
phenotype, without encoding the deviation of the non-linear convoluted dependencies. Third, using
the CellProfiler-derived features as the starting point for our anomaly-representations make the
latter more interpretable in respect to most deep learning “black-box” representations. Specifically,
using unsupervised explainability we were able to extract biologically-meaningful dependencies
that deviated in response to a perturbation (Fig. 4.4).

Weakly supervised representation-learning use experimental labels, such as the treatment label, to
“guide” their representations such that replicates of the same label are encoded close to one another
in the latent space and different labels are encoded far apart [95, 96, 97, 98, 99, 100]. Beyond
optimizing representations that are hard to biologically-interpret, experiment treatment-based
weak supervision may lead to undesired consequences where the representations of treatments
that lead to a similar phenotype are pushed away from one another in the latent space because
they do not share the same label, possibly even pushing one representation closer to the control
(Supplementary Figure 4.5A). In turn, representations with reduced cross-treatment phenotypic
similarity may induce errors in downstream analyses, especially in unsupervised interpretation of
biological function such as lead optimization [122]. In contrast, our anomaly-based method is
self-supervised, i.e., does not use treatment labels (or any other assumptions on the underlying
data) to guide the representation, rather treatment profiles’ latent representations are encoded
solely according to their deviation from the control in-distribution (Supplementary Fig. 4.5B).

The core idea of learning the in-distribution of control experiments followed by identifying anomalies
with respect to this distribution is a general concept that can be adapted to applications in cell
biology beyond high-content image-based cell profiling. For example, recent work suggested a
form of anomaly detection to identify treatments leading to altered cell fate (apoptosis or mitosis)
decision processes during live imaged cell competition assay by training a model for the prediction
of “normal” cell fate behavior and a discriminator network to determine anomalies deviating from
the expected cell decision process [123]. Of course, any anomaly-based representation requires
sufficient control replicates to properly model the in-distribution of the data (see Supplementary
Figure 4.1). In applications where there are no controls, but sufficient data, anomaly-based
representations can still be applied by learning the in-distribution of one experimental condition
and then modeling the reconstruction errors of the other experimental conditions with respect to
the in-distribution reconstruction errors. For example, in single-cell spatial multiplexed proteomics
applied to clinical data, each patient has many cells, and thus we can learn the in-distribution
of the protein expression across cells from one disease state and apply it to patients from other
disease states. Our application involved first deriving pre-defined features from the raw image
and then applying anomaly detection on the tabular representation. A similar approach can be
applied directly to the raw image data using convolutional neural networks (e.g., [124]). Learning
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the in-distribution directly from the raw images avoids segmentation errors and can unbiasedly
encode spatial relations that were not measured by the CellProfiler features, but suffer from poor
interpretability. Imaged-based anomaly detection can also have applications in other domains such
as single-cell spatial omics.

4.5 Methods

4.5.1 Datasets

All datasets were created at the Broad Institute and previously published. Two datasets had chemical
perturbations and two had genetic perturbations (Table 4.1). For each dataset two distinct readouts
were recorded: gene expression (GE) profiles and morphological profiles (Cell Painting). Each
dataset was acquired by plating cells in two sets of identical plates, perturbed identically in the
same laboratory. One of these sets was used to measure GE and the other set was imaged to
measure morphology. The morphological profiles were captured using the Cell Painting assay
[85]. Cell painting is a microscopy-based assay that acquires five fluorescence channels labeling
of the actin cytoskeleton, Golgi apparatus, plasma membrane, nucleus, endoplasmic reticulum,
mitochondria, nucleoli and cytoplasmic RNA. Acquired microscopy images were processed using
the CellProfiler software [86] to extract 1,783 features of each cell’s morphology such as shape,
intensity and texture statistics, that were aggregated (population-averaged) to create per-well
profiles. The features are measured in three cell regions – nucleus, whole-cell, and cytoplasm
(difference between whole-cell area and nuclei area) . The GE profiles were acquired using
the L1000 assay [125], that provides high-throughput measurement of mRNA levels for 978
genes, roughly covering 82% of the transcriptional variance across the entire genome. Cell
Painting profiles were used for anomaly detection representations. GE profiles were used as
additional input for selecting reproducible treatments and for MoA classification. We downloaded all
metadata-augmented per-well aggregated Cell Painting datasets from the Cell Painting Gallery (CPG)
(https://registry.opendata.aws/cellpainting-gallery/) [115]. We downloaded the preprocessed
profiles and performed normalization and feature selection in the training process to avoid data
leakage during normalization (See Data preprocessing section). GE profiles were also downloaded
from the CPG [115].

4.5.2 Data Split Approach

Each experimental plate had multiple control replicates and many treated wells without per-well
replicates (i.e., one replicate per treatment in a well). Per plate, the control wells were randomly
split to 40% : 10% : 50% between train, validation and test, correspondingly. Thus, each plate’s
wells were split to four subgroups of wells: (1) training controls, (2) validation controls, (3) test
controls, and (4) treated wells for evaluation at inference.
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4.5.3 Data Preprocessing

Per-plate feature-wise standardization was implemented on all well-level samples using the aggre-
gated training controls population. Normalization was exclusively conducted on the training set to
prevent any leakage of the test data distribution during the normalization process. Whole-plate
normalization was performed after training (See “Measuring reproducibility” section). Feature
selection was performed using the Pycytominer software [126], removing features with high ratio
of null values (null_threshold = 0.05), high correlation (corr_threshold = 0.9), and low variance
(freq_cut = 0.05, unique_cut = 0.01), all with the default parameters as set by Pycytominer.
Following feature selection, the number of features dropped from 1,700 to a range of 300-600 for
all datasets.

4.5.4 Anomaly Detection

The autoencoder architecture consisted of a large encoder and a flat decoder. Three-layer encoder,
with layer sizes 256-128-64, where each layer contains a Relu activation layer. The latent dimension
was of size 16. A 1-layer decoder transformed the latent representation back to the input size. The
loss function was the mean square error between the reconstructed output and the corresponding
observed CellProfiler representation, with an additional l2 regularization loss to restrict the output
amplitude. Each autoencoder (one per dataset) was trained until convergence or a maximum of
300 epochs with batch size of 32. Hyperparameter optimization was applied for each dataset with
a learning rate range of 1e-4 to 1e-2, output features l2 regularization range of 1e-5 to 1e-2, and
dropout ratio of 0 to 0.2. Total time for training each of the datasets, including hyperparameter
optimization, was up to one hour on the Nvidia RTX1080 GPU.

At inference, the trained autoencoders calculated the feature-wise predictions’ reconstruction error
for each well called the anomaly-based representation. All treatment replicates were z-score
normalized according to the test control wells. These steps resulted in a vector of feature-wise
z-scores for each treatment replicate.

4.5.5 Measuring Reproducibility

Whole-plate normalization was applied based on all replicate-level z-scores, including the control
and the treatment replicates, because it was the optimal setting for reproducibility, in agreement
with previous studies [88, 119]. For all representations (CellProfiler-based, Anomaly-based, L1000),
reproducibility was measured according to the fraction of reproducible treatments, a measurement
called the “Percent Replicating” score [83, 88, 91]. Briefly, for each treatment, we first calculated
the mean Pearson correlation coefficient of each pair of replicates profiles. Second, we compared the
median replicate pairs correlation of each treatment to a null distribution containing correlations of
all random pairs of treatments. Third, for robustness, we repeated the previous step for five times,
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altogether generating a null distribution containing 5∗
(ntreatments

2
)
.Last, following [88], we defined

a treatment as reproducible if its mean Replicate Correlation was above the 90th percentile of the
null distribution. The LINCS had multiple doses per compound, and reproducibility was measured
based on replicates of the highest dose for each compound.

4.5.6 MoA Classification

We compared MoA classification based on CellProfiler-based and anomaly-based representations
for the CDRP-bio and LINCS datasets that included compounds with known MoA (Supplementary
Fig. 4.6). First, for each representation, each treatment was represented by its mean profile
across plate-normalized replicates. Second, following [88], we selected reproducible treatments
according to two inclusion criteria: (1) Reproducible treatments according to the CellProfiler or
L1000 representations, or (2) Reproducibility according to the Anomaly, CellProfiler, or L1000
representations. Third, we excluded all MoAs with fewer than five reproducible treatments. All
treatments’ features were scaled to a range of [0,1] and were used to train a Logistic Regression
(LR) and a Multi Layer Perceptron (MLP) MoA classifiers. Each model was applied for prediction of
MoA labels using CellProfiler-based and anomaly-based representations independently to compare
the representations. We performed stratified nested k-fold cross-validation (k = 5) to evaluate the
classification performance. The MLP classifier architecture was made of two layers with a Relu
activation layer between them. Hidden layer sizes, regularization strength, and learning rates
were optimized per training fold. LR was optimized with different regularization parameters per
training fold. MoAs vary in compound numbers, ranging from five to 25 (Supplementary Fig.
4.6). To address data imbalance, models underwent oversampling to align class sizes with the
majority class in the training set. The predictions were evaluated using the F1-score metric. A
naive random F1 score for classes was calculated for baseline. Each classification experiment was
repeated 10 times for robustness. The statistical significance of the difference between CellProfiler
and Anomaly-based representations was calculated using the Welsh t-test, a two-sample test used
to test if two populations have different means. The test was performed with N=10, the number of
experiments per setting.

4.5.7 Autoencoder-based Anomaly SHAP Explanations

To interpret what were the inter-feature associations that deviated following a treatment we used
an extended version of the classic Shapley additive explanation (SHAP) method [117] that was
designed to explain anomalies identified by an autoencoder [118]. For a treatment or MoA of
interest, the autoencoder-based anomaly SHAP explanations were obtained independently for each
anomalous feature by calculating the autoencoder reconstructed output values of that feature and
then the SHAP values of the input features in relation to the output feature at test. First, the
most anomalous features were identified according to the reconstruction errors. Second, given
an anomalous feature, the weights associated with this feature in the first layer were deactivated
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and the well-level replicate profiles were re-introduced to the network. The output values of the
inspected feature were analyzed using kernel SHAP to compute the SHAP values of the input
features, i.e. the importance of each input feature in predicting the anomalous feature. Kernel
SHAP is a model-agnostic approximation of SHAP values via weighted linear regression. The Kernel
SHAP estimates the additive value of features in the input space for a subset of samples of interest.
The importance of an input feature is determined by the change in the model’s output when that
input feature is set to “missing”. The “missing” values are replaced with values values taken from
a reference dataset that reflects the distribution of the general data. We used samples from the
control test set as the reference dataset for kernel SHAP approximation.

4.6 Supplementary Information

Supplementary Figure 4.1: Percent Replicating score as a function of the number of control wells used to train the
in-distribution autoencoder. Dashed orange line - the percent replicating score of the
CellProfiler representations. Green data points and shade show the percent replicating score
mean and the standard deviation of the anomaly-based representations over 10 independent
experiments.
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Supplementary Figure 4.2: Analysis of the complementary information shared between the anomaly-based, the CellPro-
filer, and the gene expression representations (L1000). Top: Venn diagram showing the
number of reproducible treatments exclusive to the anomaly-based (green), CellProfiler-
based (orange), and L1000-based (blue) representations. Treatments found reproducible
by multiple representations are shown by the intersection of the different circles. Below:
Percent Replicating scores for the L1000-based representations. Distribution of Replicate
Correlations (blue), Random Pairs Correlations (gray), reproducibility threshold (dashed
red vertical line).

Supplementary Figure 4.3: Genetic expression representations (L1000) complement the CellProfiler (orange) and
anomaly-based (green) representations for MoA classification. Logistic Regression (LR) and
Multi Layer Perceptron (MLP) MoA classification F1 performance on CellProfiler versus
anomaly-based representations without (-L1000) or with (+L1000) the concatenation of
the L1000 representation. Each dot represents a unique experiment and bars indicate 95%
confidence intervals. Red dashed line indicates the F1 random score.
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Supplementary Figure 4.4: Granularity analysis in the AGP channel for the MoA of ATPase inhibitor in the CDRP-bio
dataset. Feature z-scores distributions for CellProfiler (orange) and anomaly-based (green)
representations.

Supplementary Figure 4.5: Illustration of potential caveats of using weakly supervised (e.g., using the treatment as a
weak label) (A) versus anomaly-based (B) representations. (A) A treatment representation
(yellow) is implicitly becoming more similar to the control because it was guided away from
another treatment (orange). (B) Anomaly-based representations are guided away from the
control.
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Supplementary Figure 4.6: Scatter plot indicating the F1 score as a function of the number of treatments for each MoA
in the CDRP-bio and LINCS dataset. The F1 scores were obtained with the better-performing
LR model trained using the anomaly-based representations.
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5Final Remarks

This dissertation has explored the intersection of diverse disciplines through the lens of deep
learning, with a focus on advancing the state-of-the-art in three domains: interpretability of deep
neural networks, signal processing for ultrasonic echo detection, and anomaly detection in high-
throughput phenotypic screening. Each chapter has presented novel methodologies and approaches
tailored to address specific challenges within its respective domain.

While each chapter diverged in its foundational principles, they all underscored the importance of
relying on prior knowledge of the problem domain to drive meaningful progress. From probabilistic
interpretations in the first chapter to the incorporation of physical principles in the second chapter
and the utilization of biological experiment structures in the third chapter, these works exemplify
the necessity of grounding deep learning advancements within the context of specific domains.
Collectively, these chapters underscore the versatility and potency of deep learning methodologies
in tackling complex challenges across disparate fields.
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 קציר ת

 
עבודת גמר זו חוקרת יישום למידה עמוקה עבור שלושה תחומים מדעיים ואופני  
רכישת תמונות שונים: מתן פרשנות עבור אלגוריתמי ראייה ממוחשבת בתמונות  

(, ומציאת מועמדות לתרופות  2(, חיזוי עומק גופים באולטרסאונד )פרק 1טבעיות )פרק 
ל פיתוח של גרפי השערה  (. הפרק הראשון כול3במיקרוסקופיה תאית )פרק 

סטטיסטיים המבוססים על מודלים הסתברותיים לפרשנות של רשתות נוירונים  
עמוקות עבור שיטות ראייה ממוחשבת. הגרפים מספקים שכבה של שקיפות והבנה של  

תהליכי קבלת ההחלטות של הרשתות. הפרק השני מתמקד בגילוי והפרדה של הדים  
שתות עמוקות, במטרה לשפר את חיזוי העומק עבור  אולטרסוניים חופפים באמצעות ר

יישומי בדיקות לא הורסות. הפרק השלישי מציג שיטת גילוי חריגות עבור ניסויי  
ביולוגיה תאית מבוססי תמונה. השיטה מסייעת לגלות תבניות שהשתנו במבנים תאיים  

רקים  כתוצאה ממתן תרופות באמצעות רשתות עמוקות. למרות השוני ביניהם, כל הפ
 .בעבודת גמר זו משתמשים בטכניקות חדשניות בלמידה עמוקה
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